Fire Ecology 101

Kristen Shive Assistant Professor of Cooperative Extension, Forests and Fuels

Berkeley

DEPARTMENT of ENVIRONMENTAL SCIENCE, POLICY, AND MANAGEMENT

UNIVERSITY OF CALIFORNIA Agriculture and Natural Resources

UC Cooperative Extension

Wildfire trends in California

Wildfire trends in California

Wildfire trends in California

What's changed?

- More people and infrastructure in wildland areas
- Changing climate
- Legacy of past land use
- Fire severity

Outline

Fire ecology basics

 \sim

How do we know what we know?

Modern wildfires

Stewarding forests into the future

Fire ecology basics

Forests of California

- Each forest type has unique historical relationship to fire
- Described by their fire regime

Fire ecology basics Historic fire regimes

"But the open character of the yellow-pine type of forest anywhere in the region examined is due to frequently repeated forest fires more than to any other cause."

Lieberg (1900)

"In the virgin timber fires do comparatively little damage and are easily controlled. It is seldom that the flames reach up into the foliage, even in stands of fir, but usually run along through the litter as a ground fire, often burning deep into the humus and smouldering for days"

Sterling (1904)

Fire ecology basics Historic fire regimes

Fire ecology basics Historic fire regimes

Fire ecology basics Fire severity

- Severity classes
 Low: <25% mortality
 - Moderate: 25-90% mortality
 - High: >90% mortality

Fire ecology basics Controls on fire severity

Weather

Fire ecology basics Fuels

Fire ecology basics Fire frequency and severity

High Frequency -- Low Severity

Mixed conifer forests Mixed conifer forests: Historic fire regime

Moody et al. 2006

Fire ecology basics

Mixed conifer forests of the Sierra Nevada

Predominantly low-moderate severity fire regime With small patches of high severity – spatial pattern matters!

Mixed conifer forests How did this shape our mixed conifer forests?

Mixed conifer forests How did this shape our mixed conifer forests?

Predominantly high severity fire regime: coastal chaparral

Chaparral Historic fire regime

- Infrequent fire
 - ~30-100 years
 - Lack of lightning ignitions
- Accumulating dense vegetation
 - High severity crown fire
 - Seed bank that relies on high severity

Chaparral Historic fire regime

- Now they are getting too frequent fire
 - Fueled by nonnative grass invasions, increased ignitions
 - Limits seed production for future recolonization

Modern wildfires in Sierran forests

Modern wildfires What's changed?

Modern wildfires Euro-Americans came to "save" the forest

Modern wildfires Suppressing indigenous burning

Modern wildfires And then came this guy...

Modern wildfires Our forests have changed from this:

Modern wildfires Our forests have changed from this:

Modern wildfires To this:

Modern wildfires What does this lack of fire mean for forest health?

- Decreased resilience to drought, insects and disease
 - Competition stresses the trees
- Shift to less fire tolerant species

- Loss of biodiversity in the understory
- Loss of habitat diversity across the landscape

Modern wildfires What's changed?

Modern wildfires Climate change

From: Westerling et al. 2016

Modern wildfires Interacting stressors

Modern wildfires Interacting stressors

Modern wildfires Increases in high severity fire

Stewarding forests in a time of global change

Stewarding forests for the future How can we improve forest health and reduce fire severity?

Stewarding forests for the future How can we increase resilience and reduce fire severity?

Stewarding forests for the future Fuels reduction via fire and fire "surrogates"

Stewarding forests for the future Fuels reduction via fire and fire "surrogates"

Stewarding forests for the future Allowing lightning ignitions to burn – at the right time

- Still heavily managed
 - Need to consider likely effects based on weather and location
- Generally in remote areas
- Cheapest way to treat a landscape
- Fires can be managed for multiple objectives

Stewarding forests for the future Illilouette Basin in Yosemite National Park

Stewarding forests for the future Illilouette Basin in Yosemite National Park

Stewarding forests for the future Illilouette Basin in Yosemite National Park

Modern wildfires Fuels reduction treatments work!

Modern wildfires But active fuels management is hard...

© Steve Rondeau https://www.nature

Modern wildfires How can we increase the pace and scale of treatments, and allow for more good fire?

- Increase staffing
- Increase funding
- Adjusting regulation to account for natural processes and cultural burning

Figure 3: Forest Service FY 1995 Appropriations by Fund

Realignment of federal environmental policies to recognize fire's role

Sara A. Clark^{1*}, Jenna N. Archer¹, Scott L. Stephens², Brandon M. Collins^{2,3} and Don L. Hankins⁴

Abstract

Background Enactment of the Clean Air Act (CAA), Endangered Species Act (ESA), and National Environmental Policy Act (NEPA), three of the primary federal environmental laws, all coincided with the height of fire suppression and exclusion in the United States. These laws fail to acknowledge or account for the importance of fire in many fire-adapted and fire-dependent ecosystems, particularly in the American west, or the imperative for fire restoration to improve resiliency and reduce wildfire risk as identified by western science and policeneus k

Improvement and State and Maintenance Private Forestry 5%

4IT DEPENDS7

SMOKEY

Modern wildfiresDouble down on critical resources and get ready for bigchangesTreatmentSeverity

Modern wildfires Double down on critical resources and get ready for big changes

Thank you!

UNIVERSITY OF CALIFORNIA Agriculture and Natural Resources UC Cooperative Extension

DEPARTMENT of ENVIRONMENTAL SCIENCE, POLICY, AND MANAGEMENT

