Research Update on Thrips and INSV

Daniel K. Hasegawa Research Entomologist USDA-ARS, Salinas CA

2021 Pest Management Series 11/18/2021

Topics covered

Thrips/INSV biology and monitoring

- Life cycle and transmission of INSV
- Flight studies: height of thrips movement
- 2021 thrips monitoring
- Temperature data

INSV epidemiology and host range

- Top 10 hosts
- Weeds in non-lettuce crops: CA
- AZ studies

Cultural strategies for managing thrips/INSV

• 2021 rogueing trials

Field observations on varieties

2021 INSV reporting

Topics covered

Thrips/INSV biology and monitoring

- Life cycle and transmission of INSV
- Flight studies: height of thrips movement
- 2021 thrips monitoring
- Temperature data

INSV epidemiology and host range

- Top 10 hosts
- Weeds in non-lettuce crops: CA
- AZ studies

Cultural strategies for managing thrips/INSV

• 2021 rogueing trials

Field observations on varieties

2021 INSV reporting

Western flower thrips, Frankliniella occidentalis

Adults are 1-2 mm in length Female can lay 150-300 eggs Egg to adult = 11-44 days

Development requirements

- 7.2 40.0°C (45 104°F)
- Development is reduced outside of temperature limits

Ideal conditions for development

- Egg to adult = 268 degree days (°C)
- Egg to adult = 11 days

Thrips host range = 100s of plants

Western flower thrips as vectors for tospoviruses

Tospoviruses affecting lettuce on the Central Coast of CA

- Impatiens necrotic spot virus (INSV)
- Tomato spotted wilt virus (TSWV)

Virus must be acquired as larvae to transmit as an adult

- <u>Only</u> adults can transmit the virus.
- Virus is <u>not</u> passed from adult to offspring

INSV host range = 100s of plants

• Many infected plants do not show symptoms

Primary infection

Outside field

Secondary infection

Primary infection

Outside field

Western flower thrips (Frankliniella occidentalis)

- Thrips are poor flyers
- Rely heavily on wind for dispersal
- Distance is hard to estimate

Height of thrips movement in the Salinas Valley

Chualar and Gonzales: 10/3 - 10/10/2020

Height (ft)	Average number thrips
10.00	6%
8.75	16%
7.50	14%
6.25	17%
5.00	17%
3.75	18%
2.50	12%
1.25	16%
TOTAL	100%

Soledad: 9/9 - 10/6/2021 25-27 feet: ~50 thrips/card

Thrips monitoring

Thrips/sticky card/week (21 total, average)

200

2021 Thrips monitoring

Thrips/sticky card/week (21 total, grouped by region)

Air temperature: 20 years

CIMIS Station 116: Salinas North

Topics covered

Thrips/INSV biology and monitoring

- Life cycle and transmission of INSV
- Flight studies: height of thrips movement
- 2021 thrips monitoring
- Temperature data

INSV epidemiology and host range

- Top 10 hosts
- Weeds in non-lettuce crops: CA
- AZ studies

Cultural strategies for managing thrips/INSV

• 2021 rogueing trials

Field observations on varieties

2021 INSV reporting

Top 10 hosts

Pictures courtesy of Richard Smith and UC ANR

Field surveys for INSV hosts

<u>April – October 2021</u>

TOP 10 HOSTS	INSV positive / Total	% INSV positive
Perennial Artichoke (2 fields)		
Common chickweed*	26/50	52%
Swinecress	1/30	3%
<u>Broccoli (2 fields)</u>		
Annual sowthistle	1/20	5%
Nettleleaf goosefoot	1/20	5%
<u>Cauliflower (1 field)</u>		
Annual sowthistle	1/20	5%
Nettleleaf goosefoot	0/20	0%
Common lambsquarter	0/20	0%
<u>Vineyard (1 field)</u>		
Little mallow	17/44	38%
Annual sowthistle	23/37	62%
Nettleleaf goosefoot	32/42	76%
Common knotweed	8/36	22%
Shortpod mustard*	1/40	2%

Other crops	INSV positive / Total	% INSV positive
Black mustard	0/60	0%
Russian knapweed	0/56	0%
Beans	0/42	0%
Peas	8/46	17%
Sunflower	1/32	3%
Radicchio*	22/22	100%

Optimal conditions for INSV transmission

	INSV positive / Total	% INSV positive
Little mallow	17/44	38%
Annual sowthistle	23/37	62%
Nettleleaf goosefoot	32/42	76%
Common knotweed	8/36	22%
Shortpod mustard*	1/40	2%

*Shortpod mustard (70 flowers)

~5.4 adult thrips per flower

~4.1 nymph thrips per flower

Optimal conditions for INSV transmission

	INSV positive / Total	% INSV positive
Little mallow	17/44	38%
Annual sowthistle	23/37	62%
Nettleleaf goosefoot	32/42	76%
Common knotweed	8/36	22%
Shortpod mustard*	1/40	2%

*Shortpod mustard (70 flowers)

~5.4 adult thrips per flower

Common knotwee

~4.1 nymph thrips per flower

Little mallow 'Malva'

High density of INSV and thrips hosts

Virus acquisition/transmission by thrips

Top 10 hosts for INSV

CLGRP 2020-2021

#	Common name	WINTER 2019		SPRING 2020		SUMMER 2020		WINTER 2020		TOTAL						
	common name	Total	INSV	Percent	Total	INSV	Percent	Total	INSV	Percent	Total	INSV	Percent	TOTAL	INSV	Percent
1	Little mallow	143	25	17%	196	49	25%	76	5	7%	129	30	23%	544	109	20%
2	Annual sowthistle	58	25	43%	55	8	15%	79	3	4%	103	29	28%	295	65	22%
3	Nettleleaf goosefoot	41	4	10%	40	7	18%	50	6	12%	83	25	30%	214	42	20%
4	Mare's tail	29	2	7%	36	0	0%	60	1	2%	32	12	38%	157	15	10%
5	Field bindweed	20	7	35%	20	6	30%	52	2	4%	26	13	50%	118	28	24%
6	Shepherd's purse	22	7	32%	84	3	4%	10	1	10%				116	11	9%
7	Hairy fleabane	28	10	36%				20	0	0%	45	15	33%	93	25	27%
8	Purslane	15	11	73%				60	4	7%				75	15	20%
9	Burning nettle	20	6	30%	24	1	4%	10	2	20%	5	3	60%	59	12	20%
10	Common lambsquarter	24	14	58%	10	4	40%	20	2	10%				54	20	37%
	Top 10 total	400	111	27%	465	78	16%	437	26	5%	423	127	30%	1725	342	20%
73	TOTAL	824	128	16%	723	79	11%	822	39	5%	952	178	19%	3321	429	13%

Top 10 hosts for INSV

CLGRP 2020-2021

Note on weed management

Lettuce, thrips, and INSV are still around, although acreage and populations are declining Recent rain = emergence of weeds Transition of the virus from lettuce to weeds

Continue weed management during off-season months (December and January) to reduce potential reservoirs of INSV *before* 2022 lettuce season and *before* thrips populations increase

Establish Valley-wide efforts to manage "hard to access" areas

Salinas Valley Agriculture Blog Nov 3, 2021

Nov 3, 2021

Richard Smith, Larry Bettiga and Daniel Hasegawa

Farm Advisors with UCCE Monterey and Research Entomologist, USDA ARS, Salinas

Impatiens necrotic spot virus (INSV) is a serious disease of lettuce in Monterey County. It is a tospovirus that is spread by an insect vector, the western flower thrips (*Frankliniella accidentalis*). INSV also infects a wide range of other host plants and is spread when thrips acquire the virus from infected host plants and migrate into uninfected lettuce fields. Lettuce is a key host for INSV during the lettuce production season, but during the winter when there are no lettuce fields, the virus survives in weedy host plants in a variety of habitats: roadsides, ditches, waste areas around equipment yards, and natural areas. Vineyards can also be habitat for INSV due to the presence of infected weed hosts. This article will discuss the specific role of vineyards in providing habitat for INSV host plants.

The vineyard floor in grape production in Monterey County, consists of the area under the vines (vine row) that is irrigated with drip irrigation. Weeds are managed here using herbicides or cultivation or a combination herbicides and cultivation. As a result, the area under the vine row generally has low weed populations and is not the area of concern for INSV host weeds.

Vegetation in the area between rows (row middles) is managed by mowing or discing, but it is most often vegetated with a cover crop or resident vegetation. The vegetation in this area is generally managed by mowing. By Richard Smith, Larry Bettiga and Daniel Hasegawa Author - Administrative Services Assistant/Office Manager

Comments: 0

Field surveys for INSV hosts in Arizona

Weed sampling for INSV:

Field surveys for INSV hosts in Arizona

Currently working with Apurba Barman (UCCE Imperial) and Alex Putman (UC Riverside) to test samples in Southern California dessert

Topics covered

Thrips/INSV biology and monitoring

- Life cycle and transmission of INSV
- Flight studies: height of thrips movement
- 2021 thrips monitoring
- Temperature data

INSV epidemiology and host range

- Top 10 hosts
- Weeds in non-lettuce crops: CA
- AZ studies

Cultural strategies for managing thrips/INSV

• 2021 rogueing trials

Field observations on varieties

2021 INSV reporting

Secondary infection

Primary infection

Outside field

<u>Roguing</u>: diseased plants are removed to slow the spread of disease "Extension of weed management"

Secondary infection

Primary infection

Outside field

Rogue trial #1: Fall 2020

Plant: 8/21/20 Harvest: 10/24/20

40 in. beds, conventional, direct-seeded Treatment sizes = 50 x 50 ft. Rogue = removing (bagging) INSV symptomatic plants from the field 3 Rogues

Rogue trial #2: Summer 2021

Plant: 5/12/21 Harvest: 7/19/21

80 in. beds, conventional, direct-seeded Treatments: Rogue (2), No Rogue (2) Treatment sizes = 50 x 50 ft. Rogue = removing (bagging) INSV symptomatic plants from the field 2 Rogues 25%

~117 thrips per week

Rogue trial #3: Summer 2021

Plant: 6/10/21 Harvest: 8/2/21

Topics covered

Thrips/INSV biology and monitoring

- Life cycle and transmission of INSV
- Flight studies: height of thrips movement
- 2021 thrips monitoring
- Temperature data

INSV epidemiology and host range

- Top 10 hosts
- Weeds in non-lettuce crops: CA
- AZ studies

Cultural strategies for managing thrips/INSV

• 2021 rogueing trials

Field observations on varieties

2021 INSV reporting

Field observations on varieties

Variety	INSV Symptoms
Vicious	+++++
Boronda	+++
Momentous	++
Salvius	++++
Copious	+

INSV Reporting: 2021 Season

of fields reporting INSV at >1% incidence

(~25% of industry reporting: growers/shippers, ag service companies)

МАР	LOCATION	SEASON TO DATE
1	North Salinas, Blanco, Castroville	90
2	Spreckels	94
3	Firestone	3
4	Chualar NW	44
5	Salinas South	99
6	Chualar NE	68
7	Chualar SW and Gonzales NW	44
8	Chualar SE and Gonzales NE	89
9	Gonzales SW and Soledad NW	52
10	Gonzales SE and Soledad NE	0
11	Soledad	161
12	Greenfield and South County	22
TOTAL		766

Chris Valadez, GSA President Mary Zischke, INSV/Pythium Task Force leader Task Force members

INSV/Pythium GAPs

- Disk harvested fields as soon as possible
 - INSV infected plants continue to harbor thrips that could move the virus to later plantings
 - Pythium infected plants support the formation of soilborne spores that could infect subsequent plantings for several years
- Aggressively manage thrips
- Aggressively manage weed hosts
 - In lettuce plantings, in other crops on the ranch, in bordering areas, when possible
- Report disease incidence
 - Scout for both INSV and Pythium
 - Know the key symptoms of both diseases

Thrips/INSV IPM model (in progress)

Lettuce-free period

THANK YOU

Technician: Laura Hladky

Students: Joseph Mellow, Shawn Melendy, Rahil Ryder, Duncan Miller, Mariana Garcia, Rebecca Munster, Grace Hardy, Tony Tapia

<u>CSUMB</u>: Elizabeth Mosqueda, JP Dundore-Arias

<u>UCCE</u>: Richard Smith, Apurba Barman, Jasmine Rodriguez (GSA)

<u>U of AZ</u>: John Palumbo, Stephanie Slinski, Bindu Poudel-Ward

UC Riverside: Alex Putman

Growers and PCAs

Agricultural Research Service

CALIFORNIA DEPARTMENT OF FOOD & AGRICULTURE

