

Understanding Cap Extraction in Red Wine Fermentations

Max Reichwage, Larry Lerno, Doug Adams, Ravi Ponangi, Cyd Yonker, Leanne Hearne, Anita Oberholster, and David Block

Driving innovation in grape growing and winemaking

Understanding Cap Extraction in Red Wine Fermentors

- Motivation and key molecules
- Chemical gradients in red wine fermentors
- Effects of pumpover volume and frequency
- Effects of cap and must temperature on phenolic extraction

Cap Extraction in Red Wine Fermentors

Closer look at the molecules extracted

- Polymeric flavan-3-ols (tannins)
 - The most abundant class of phenolics in grapes
 - Present in skins and seeds
- Anthocyanins
 - Malvidin-3-glucoside is the predominant anthocyanin
 - Found in the skin
- Hydroxycinnamates
 - Ex: caftaric acid, caffeic acid, coumaric acid
 - Found in the skin and pulp

(Adams 2006)

HO

Closer look at the molecules extracted

• Grape tannins-oligomers

 catechin (C), epicatechin (EC), epigallocatechin (EGC), and epicatechin gallate (ECG)

Differences between skin and seed tannins

- Mean degree of polymerization (mDP) for skin tannin are ~30; seed tannins are ~10 (Souquet et al. 1996)
- Proportion of ECG units is different in seeds (~30%) and skins (~5%) (Cheynier et al. 2006)

Hypothetical tannin tetramer (Adams 2006)

A molecular mechanism for cap extraction

Chemical gradients in red wine fermentations

Driving innovation in grape growing and winemaking

Experimental Design: UC Davis/E&J Gallo

- Grapes: 2011 Cabernet Sauvignon from Lodi, CA
 - 23.3° Brix, pH of 3.41, T.A. of 0.47 g/L
 - Hand-picked, destemmed and crushed
 - Inoculated with *S. cerevisiae* strain Lalvin D254®
 - YAN adjusted to 300 ppm, addition of 50ppm SO₂
- Pressed at dryness

Are there chemical gradients in red wine fermentations?

- Installed a "curtain" of 66 temperature sensors throughout the cross-section of a 2000 L tank
- 15 sample extraction points
- Fermented 2 Tons of Cabernet Sauvignon
- Pumped-over 1 tank volume 2x per day
- Peristaltic pump on catwalk for sample extraction

Analyses Performed

- 1. Phloroglucinolysis of Isolated Tannins
 - Tannin concentration, mDP, skin/seed contributions
- 2. **RP-HPLC Phenolic Assay**
 - Monomeric phenolic concentrations

Fermentation Profile

Normalized y-axis : Brix (1.0 = 25 Brix), Free Anthocyanin (1.0 = 500 mg/L), Tannin (1.0 = 300 mg/L)

Results – Free Anthocyanin

Free Anthocyanin Before and After A Pump-Over (Day 3)

Free Anthocyanin Before and After A Pump-Over (Day 5)

Tannin

Tannin Before and After A Pump-Over (Day 3)

Tannin Before and After A Pump-Over (Day 5)

Mean Degree of Polymerization (mDP)

2 possible explanations:

- 1. Skin vs. seed tannin contribution
 - Initially, the larger skin tannins are extracted in the cap
 - Later in the fermentation, the smaller seed tannins are extracted, bringing the mDP down
- 2. Readsorption of larger tannins to the skin cell wall material
 - Larger tannin molecules have more reaction sites for hydrogen bonding

5

Percent Galloylation

- Percent galloyation is the percentage of ECG subunits of tannins (determinged with phloroglucinolysis)
- % galloyation is greater in the seeds than the skins
- Increasing percent galloylation in the cap suggests increased extraction of tannins from the seeds

Phenolic Results - Catechin

- Increases from ~8 mg/L to ~55 mg/L of catechin in the cap
- Relatively late to extract, could be a marker for seed extraction

Learnings from gradient studies

- Gradients in phenolics do exist
- Skin extraction is early, seed extraction is late
- Early cap samples may indicate final tannin level needs more work.
- Examining gradients in more detail may allow us to understand extraction at a more fundamental level

Effects of Pumpover Volume and Frequency

Driving innovation in grape growing and winemaking

Fermentation treatments (2012)

Set	Treatment	Liquid Temp	Cap Temp	Cap Management Regime	
А	Control (0.5)	25°C	n/a	PO 0.5 volume, 2/day	
	Control (1)	25°C	n/a	PO 1 volume, 2/day	
	Control (2)	25°C	n/a	PO 2 volumes, 2/day	
В	1	20	20		
	2	25	25	As needed to maintain temp	
	3	30	30		
	4	35	35		
С	1	20	25		
	2	25	30	As needed to maintain temp	
	3	30	35		

Wine production

- Grapes: 2012 Cabernet Sauvignon from Lodi, CA
 - 24.3°Brix
 - pH = 3.85
 - T.A. = 3.8 g/L (adjusted to 5.97 g/L)
- YAN adjusted to 300 ppm, addition of 50 ppm SO₂
- Inoculated with *S. cerevisiae* strain Lalvin D254
- Pressed after 14 days 7-9 days extended maceration
- Sampling: AM & PM till dry, then AM only
- Fermentations performed in triplicate using Cypress/UC Davis Research Fermentors (TJs)

Using the TJ Fermentors

Effect of Pumpover Volume

Effect of Pumpover Volume

Examining pumpover frequency

Set	Treatment	Liquid Temp	Сар Тетр	Cap Management Regime
A	1	25	NC	1/2 vol 8x per day
	2	25	NC	1 vol 4x per day
	3	25	NC	2 vol 2x per day
	4	25	NC	4 vol 1x per day
В	1	1 day Cold Soak, 25	NC	2 vol 2x per day
	2	4 day Cold Soak, 25	NC	2 vol 2x per day
	3	7 day Cold Soak, 25	NC	2 vol 2x per day
	4	10 day Cold Soak, 25	NC	2 vol 2x per day

For 2013, pressed all batches at 8 days.

Pumpover frequency does not affect phenolic extraction

RP-HPLC

Pumpover frequency does not affect phenolic extraction

RP-HPLC

No change in color

UV-VIS

No effect on anthocyanin or tannin extraction

No effect on phenolic profile of finished wine

RP-HPLC

No effect on origin of tannins

Phloroglucinolysis

Learnings from pumpover studies

- Pumpover volume does not make a difference in phenolic extraction (for volumes tested)
- Pumpover frequency does not make a difference in phenolic extraction

Effects of Cap and Must Temperature on Phenolic Extraction

Driving innovation in grape growing and winemaking

Fermentation treatments (2012)

Set	Treatment	Liquid Temp	Cap Temp	Cap Management Regime	
A	Control (0.5)	25°C	n/a	PO 0.5 volume, 2/day	
	Control (1)	25°C	n/a	PO 1 volume, 2/day	
	Control (2)	25°C	n/a	PO 2 volumes, 2/day	
В	1	20	20		
	2	25	25	As needed to maintain temp	
	3	30	30		
	4	35	35		
С	1	20	25		
	2	25	30	As needed to maintain temp	
	3	30	35		

TJ Fermentors

Effect of Cap and Liquid Temperature

The effect of cap and liquid temperature

The effect of cap and liquid temperature

Is the main driver for extraction the liquid temperature or cap temperature?

Is the main driver for extraction the liquid temperature or cap temperature?

Liquid temperature or cap temperature?

Liquid temperature or cap temerpature?

Learnings from cap and liquid temperature studies

- Temperature affects how rapidly skins are extracted (not necessarily how much is extracted)
- Temperature definitely affects seed extraction
- Liquid temperature seems to be more important than cap temperature for extraction

Summary

- Chemical gradients were observed for a number of important compounds
- Extraction of compounds located in the skin appears to occur early in fermentation
 - Could early cap tannin be a marker for final tannin levels?
- Extraction of compounds located in the seeds appears to occur later in the fermentation and is more temperature dependent
- Liquid temperature seems to have more effect than pumpover volume on extraction

Understanding the mechanism of extraction will allow better manipulation of phenolic profiles

Acknowledgements

- Dr. Roger Boulton
- Chik Brenneman
- Paul Green
- Tim Jones
- Dr. Cary Doyle
- John Schadt
- Tom Bell (Bainer Hall Machine Shop)

- Collin Chew
- Dustin Owens
- The Adams Lab
- The Ebeler Lab
- E&J Gallo Winery:
 - Dr. Leanne
 Hearne
 - Dr. Ravi Ponagi
 - Dr. Tom Pugh
 - Dr. Nick
 Dokoozlian
 - Cynthia Yonker
 - Winery Interns:
 Daina, Jeff, Ben,
 Laura, and
 Quinton

Funding Sources:

- E&J Gallo Winery
- UC Davis Federal Block Grant
- Harry Baccigaluppi Scholarship
- Brad Webb Memorial Scholarship
- Wine Spectator Scholarship