

UCCE Cover Cropping Field Day 10/23/14-Hurst Ranch, Jamestown, Ca.

L.R. Wunderlich, UCCE Farm Advisor-Central Sierra <u>lrwunderlich@ucanr.edu</u> Chuck Ingels, UCCE Farm Advisor-Sacramento Valley <u>caingels@ucanr.edu</u> Photos from: Cover Cropping in Vineyards, A Grower's Handbook ANR publication 3338

I. Is cover cropping for you?

Pros	Cons
	Frost damage potential increased
Prevent soil erosion and water runoff	
Build organic matter-improve tilth and water penetration	
Take up excess soil moisture	Compete with crop for water
Improved orchard or vineyard accessibility (vehicle and	
crew footing)	
Legumes increase N	Grasses may compete with crop for
	nutrients
Potentially less pest damage	Potentially more pest damage
Economics-potential benefits over long term (difficult to	Economics-costs for start-up (seed,
measure, i.e. improved water penetration impact yield)	equipment)

**Note: Growers should consider individual site capacity – a lot of variability exists in the foothills and what works for your neighbor may not work for you. Consider soil type, depth, available crop water, elevation, nutrient status.

II. Discussion: Cover cropping in drought. (see handout)

III. Cover crop choices: To till or not to till.

Determines species choice.

Till (roots cut) aka "green manure"	No-till (mowed) aka "permanent" or
	"competitive" – though not all are competitive
Adds carbon source for soil microbes,	Increases soil permeability and soil organic
increases microbial biomass	matter content
Legumes – low C:N ratio, release N	Weed control (yellow star thistle competition)
Grasses – higher C:N ratio, tie up N	
Erosion control before till down (in winter)	Erosion control
Less competitive (tilled down before season	Competitive
starts)	
Gopher tunnels destroyed	Gopher tunnels persist; clovers and medics
	attract gophers

Species.

Till mix options (large seeded; can plant into Nov.):

Oats Barley Cereal Rye Peas Vetch Bell Bean

- **Oats** tolerate wet, heavy soils and low pH soils, common in the foothills. However, oats are less tolerant to drought and cold temps.
- **Barley** is inexpensive and fast growing, providing good biomass and competition against weeds. It is not as tolerant to wet conditions as oats.
- **Cereal rye** can germinate with cooler temperatures and it is the most cold-tolerant cereal.
- **Peas**. Austrian Winter pea has pink and red flowers, is dormant during the winter but produces large biomass if allowed to grow into spring. Magnus peas have large light and dark pink flowers and large tendrils; it grows during the winter and matures earlier than Austrian Winter, allowing for earlier tillage in spring.
- Vetch species differ in cold tolerance and aggressiveness. Lana is vigorous, but if it will be incorporated in early spring, it shouldn't get out of control. Hairy vetch is the most cold tolerant and it also grows fast. Common vetch is the least aggressive but it doesn't grow as much in winter – it puts on most of its growth in late winter through spring. One of the vetches is often used in a high-biomass (large-seeded) mix.
- Bell Bean has a large taproot that helps open up heavy soils. May be omitted in frost prone areas due to its height. Doesn't tolerate mowing.

Oats

Cereal Rye

Austrian Winter

Vetch

Bell Bean

No-till options for winter annuals (plant in

October-hopefully with rain):

Zorro fescue Blando Brome Rose clover Subterranean clover Bur medic

For color/flower appeal (mow high, plant every other row?):

Mustards Phacelia

- **'Zorro' fescue** is a fast growing, early maturing grass. It is well suited to soils with rocks, volcanic pumice or gravel. It's a good choice for erosion control with minimal seedbed preparation needed. It can be mowed to 4 inches but avoid mowing for a month in spring, around early May, to allow reseeding. 'Zorro' fescue can substitute for 'Blando' brome where quicker fall growth and greater drought tolerance is needed, but it is more expensive than 'Blando' brome.
- **'Blando' brome**, a selection of soft chess, is low growing and mowable, and it matures early. It has strong seedling growth, excellent reseeding, and dense, fibrous roots. A good choice for reducing erosion without competing excessively with the vines.
- Rose clover grows well on rocky, dry soils with low pH but does poorly in wet, heavy soils. Reseeds well but stand can be thin and can let weeds encroach.

'Zorro' fescue

'Blando' brome

Rose clover

Subterranean clover

• **Subterranean clover** (sub clover) tolerates close mowing, provides weed suppression, is loved by livestock, and most varieties prefer low pH soils.

IV. Establishing the cover.

- Disking, to remove weeds so they don't compete with seeded cover, and then smoothing and levelling the area to be seeded, if possible, is preferred but not always possible.
- The best strategy is to use a regular seed drill to seed the cover crop (see Muratori demonstration) or a no-till drill.
- Alternatively, use a broadcast seeder, and use a shallow harrow and/or ring roller to lightly bury seed. Unburied seed risks drying out and failing to establish.
- Fertilizer. Some species will benefit from addition of N (grasses) and/or P or S (flowering species, legumes).
- **Inoculants.** Some legumes require inoculation with Rhizobia, the bacteria that fix N. Inoculants are living bacteria (with an expiration date) and care should be taken not to expose them to heat, pesticides, or direct sunlight.

V. Managing the cover crop.

Why timing is critical

- Frost danger to crop
- Maximizing N
- Reseeding

What happens when a cover crop is tilled in?

Breakdown of cover residue and nutrient release depends on many factors, including:

The cover crop species; C: N ratio; timing of tillage; biomass accumulated (how much the cover crop grew); the soil texture, temperature

The Nitrogen cycle. From Cornell University Cooperative Extension Fact Sheet

and moisture level; and the degree of chopping and incorporation.

✓ Discussion of N cycle and fate: is tilling always better?

Calculating the amount of plant available N (PAN) from your cover crop.

Table 4-1. Example calculation of nitrogen contribution by a legume cover crop

In a vineyard with a 'Lana' wo total of 8 lb of the vetch was co sample areas. A 1-lb subsample ted to the lab.	ollypod v ut from tl e was col	vetch hree llecte	a cover crop, a 1-ft by 3-ft ed and submit-				
Lab analysis of moisture content Lab analysis of dry weight N content Sample dry matter			82% 2.8% 100% - 82% 18%				
				To find the amount of N contri cover crop:	ibuted pe	r pla	nted acre of
				$8 \text{ lb} \times 18\% \text{ dry matter} =$	= 1.44 lb dry matter/3 × 3 ft area		
1.44 lb dry matter \times 2.8% N =	0.04032	lb N	/9 sq. ft				
0.04032 lb N ÷ 9 sq. ft =	0.00448 lb N/sq. ft						
0.00448 lb N/sq. ft × 43,560 = sq. ft/acre	00448 lb N/sq. ft × 43,560 = 195.1 lb N/planted acre of t/acre cover crop						
To determine the amount of N	per vine	yard	acre:				
Swath covers 50% of row: = $50\% \times 195.1$ lbs	97.6 lb N/viney	ard a	acre				
Cover crop planted in every ot 97.6 lb N/vineyard acre ÷ 2 =	her row: 48.8 lb l	N/vii	neyard acre				
Adapted from Frate 1994. Table 4-2. Estimated amount	ts of nitro	ogen	fixed by variou				
legumes Cover crop		I (N fixed lb/acre)				
'Lana' woollypod vetch (<i>Vicia villosa</i> ssp. <i>dasycarpa</i>	1)	Ę	50-200				
Medics (Medicago spp.)		5	50-100				
Subclover (<i>Trifolium subterraneum</i>)		1	184–250				
Rose clover (Trifolium hirtu	m)	F	50-100				

122		
0.00448 lb N/sq. ft \times 43,560 sq. ft/acre	Ш	195.1 lb N/planted acre o cover crop
0.04032 lb N \div 9 sq. ft	=	0.00448 lb N/sq. ft
1.44 lb dry matter $\times2.8\%$ N	=	0.04032 lb N/9 sq. ft

	(ID/acre)	
'Lana' woollypod vetch (<i>Vicia villosa</i> ssp. <i>dasycarpa</i>)	50-200	
Medics (<i>Medicago</i> spp.)	50-100	
Subclover (<i>Trifolium subterraneum</i>)	184-250	
Rose clover (<i>Trifolium hirtum</i>)	50-100	
White clover (<i>Trifolium repens</i>)	114-200	
Strawberry clover (<i>Trifolium fragiferum</i>)	100-300	
		-

Source: Munoz and Graves 1987.

Equipment options for no-till management.

Flail mowing (can also chop up prunings at same time). Better at shredding biomass. More \$\$. Need to sharpened and replace blades.

Rotary mowing. Work better with shorter stature covers. Less \$\$.

Roller/Crimper. Knocks down the cover crop without shredding to form a weed-suppressing mulch. "Chevron" design of blades prevents bouncing. Popular with no-till grain farmers.

VI. Pest Management and Cover Cropping

- Yellow starthistle and weeds.
- Leafhoppers in vineyards.
- Gophers and voles.

VII. Wrap up and Questions.