Fertilization of Organic Vegetables

Richard Smith, Daniel Geisseler Michael Cahn and Tricia Love UC Cooperative Extension, Monterey County

N dynamics in a conventional farming system

Nitrogen dynamics in an organic farming system

Management of Fertilization of Organic Vegetables

- Completed a 4-year study funded by FREP
- In-field and lab evaluations of mineralization of soil organic matter and organic fertilizers
- Nitrogen and phosphorus balance
- Nitrogen management trials
- Impact of organic fertilizers on soil health

Management of Fertilization of Organic Vegetables

- Organic operations will also be subject to A/R (applied to removal) regulations in Ag Order 4.0
 - With that in mind....
 - We explored how much of the applied fertilizer N was available
 - Explored if N applications could be fine tuned with nitrate testing (as is commonly done in conventional production)

Management of Nitrogen Fertilizer

- How much and when to apply N fertilizer for vegetable crop production is an interesting and complex question:
 - What is the total crop need
 - How much N is made available from soil organic matter, prior crop residues and irrigation water
 - How much and when is N made available from the current fertilizer application

Nitrogen Uptake by Crops: A <u>starting point</u> for understanding the N needs of vegetable crops

Сгор	Crop Uptake Ibs N/A	Percent removed in the harvested portion
Broccoli	250-350	25-35
Cauliflower	250-300	25-35
Celery	200-300	50-65
Lettuces	120-160	50-60
Baby lettuces	60-70	65-75
Spinach	90-130	65-75

Management of Nitrogen Fertilizer

- How much N is made available for crop growth from both non-fertilizer and fertilizer sources is poorly understood
- How do we fine tune N applications under the axiom: feed the soil/feed the plant?
- For fast-growing, high N demanding vegetables, this is particularly tricky given differences in N release due to soil temperature and other factors

Patricia Lazicki

Impact of N Mineralized from Soil Organic Matter

- The amount of N from the soil organic matter provides a baseline supply
- Given the quantity it provides, the amount of supplemental fertilizer N can be modified
- In general, it will not provide all N needed

Given the Composition of Organic Fertilizers, How Much Plant-Available N is Released?

In-field Fertilizer Mineralization Studies

Polypropylene Pouches with Fertilizer

- Pouches with fertilizer were placed into the soil at the beginning of the crop cycle
- 4-4-2 (blend of chicken manure, bone and meat meals) buried and on soil surface (direct seeded romaine)
- 12-0-0 (feather meal)

In-field Fertilizer Mineralization Studies

Buried in soil

Place on top of soil

4-4-2

Percent N Mineralized from Pouches Buried vs Surface

Different N Release Between 4-4-2 & 12-0-0 in Surface and Buried Placement

Pouch Evaluations

- Placement of the material affects the speed of mineralization of N and affects the amount of material needed for optimal growth
- How much nitrogen fertilizer is needed for clipped spinach production?

2017 Clipped Spinach Application Data

Spinach is the trickiest crop to manage N due to the shallow rooting, high N demand curve and exclusive use of sprinkler irrigation

CC Regional Water Quality Control Board Report; Cahn and Qin

Spinach: Impact of Residual Soil Nitrogen

Listing IbsN/A	At- planting IbsN/A	Total IbsN/A	At plant soil NO ₃ -N	Harvest soil NO ₃ -N	Harvest crop Tons/A
0	0	0	18	5	6.4
0	80	80	18	8	6.7
80	0	80	18	11	7.1
80	80	160	18	9	6.9

- Clay loam soil (3.2% OM) with moderate residual soil N
- Weak yield increase with fertilization with either 80 or 160 lbs N/A
- Probably low leaching over the season

Spinach: Impact of Residual Soil Nitrogen

Listing IbsN/A	At- planting IbsN/A	Total IbsN/A	At plant soil NO ₃ -N	Harvest soil NO ₃ -N	Harvest crop Tons/A
0	0	0	33	21	10.1*
40	40	80	33	38	9.3
80	80	160	33	44	8.8

- Clay loam soil (3.5% OM) with <u>high</u> residual soil nitrate-N
- No yield increase with fertilization yield decrease
- Combination of high mineralization and residual N
- Probably low leaching

Spinach: Impact of Residual Soil Nitrogen

At- Plant IbsN/A	Top dress IbsN/A	Total IbsN/A	Total Net IbsN/A	At plant soil NO ₃ -N	Harvest soil NO ₃ -N	Harvest crop Tons/A
0	0	0	0	28	17	6.1
0	80	80	40	28	19	6.5
80	0	80	40	28	21	6.9
160	0	160	80	28	25	7.7

- Sandy loam soil (1.2% OM)
- High residual soil N, but low mineralization from organic matter; moderate net N release from fertilizer, which puts these crops on the edge
- Probably greater leaching of residual N on sandy soil

Initial Nitrate-N and Percent Yield Increase with Fertilization

If taking net mineralized fertilizer N into account many organic spinach fertilizer programs are quite modest: A/R around 1.0

Testing for Residual Nitrate-Nitrogen to Guide Fertilizer Applications

- Testing for residual soil nitrate-N is common in conventional production
- It can also be useful in organic, but for intensive fast maturing crops such as spinach, the tests have to be done prior to planting to have sufficient time to make fertilizer applications
- Later in the crop cycle is too late for the fertilizer to be effective in spinach

Testing for Residual Nitrate-Nitrogen to Guide Fertilizer Applications

- Early testing creates an issue with potential leaching losses with the germination water (3+ inches)
- On sandy soils nitrate tests may not be useful if leaching reduces residual nitrate-N
- On heavier soils, with less leaching, N applications can be reduced if sufficient residual nitrate-N is present

IRRIGAT TOTAL N Page 1 of 3 March 19, 2018 V Hover over the SECTIC	ED LANDS REGULA	ATORY PROGRAM REPORT FORM CENTRAL COAST REGIO	DNAL WATER QUAL	EMAIL FILLABLE ELECTRO and saved fillable ("live") e ITY CONTROL BOARI	DNIC FORM AS AN lectronic form and Reporting D Click to Section	ATTACHMENT: Atta send to AgNOI@wate Period: 01/01/2017 below to clear the correspond on 1 Section 1 Section	to 12/31/2017 ling section of the form.
AW: County If ranch hydropo SECTIC	Ranch Global APN(s): Penhouse, nursery, or Rect from the dropdown: NITROGEN APPLIED WITH IRRI A: Water source(s) Section II-	For Org	anic F	ertilize	ons er		wentire og period) alculates iction IV) NAPPLED ALENDMINTS
Select the sources the report option in purple p Section on Sections SECTIC SECTIC Sections of Har Report (Select fr	The A/R implicat A perce recalcit Ag Orde mineral evaluati	regulation ions for or nt of the ap rant and no er 4.0 needs ization of o ons	s in Ag ganic pr oplied fe ot a leac s to take rganic f	Order 4. roductio ertilizer N hing haz e into ac ertilizers	0 will n l is ard count s in th	have t actua he A/R	rogen A plied t & nts (total it) rom composit and s) mode of ource rom duri g the rectors rectors rom this ection) Add tional info nation
1.			I 11.				•
2.			12.				•
3.			• 13.				•
4.			14.		10 10 10		•
-				<u>111</u>			

Fertilization of Organic Broccoli

2017 Broccoli Application Data

Broccoli Nitrogen Evaluations

Field	Soil Organic Matter	Fert. N applied	Net from fertilizer	Nitrate N in water	Soil N mineralized over cycle	Total available N	Crop N uptake
1	1.6	437	219	20	67	306	376
2	1.3	451	163	10	109	326	326

 Both fields used drop on top applications which reduced the amount of N released by the fertilizer

Broccoli Nitrogen Evaluations

Field	Fert. N applied	Net from fertilizer	Crop N uptake	Crop R*	A/R N applied	A/R Net N released
1	437	219	376	113	3.9	1.9
2	451	163	326	98	4.6	1.7

- Crop R for broccoli is approximately 30% of uptake
- The N not mineralized becomes part of the soil organic N fraction and acts like soil organic matter and releases at a slow steady rate

Preliminary Observations of Nitrate Leaching

- We examined nitrate levels down to 7 feet deep at the beginning and end of the cropping cycle on three fields
- In two of the fields, there was little evidence of movement of nitrate downward in the soil profile
- In one field there was some slight enrichment of nitrate levels down to 4 feet deep

Liquid Fertilizers Tested

Material	Source
7-0-0	Soybean hydrolysate
4-2-2	Beet extract and corn steep liquor
3-1-5	Sugar molasses & acidulated fish tankage
6.5-0.5-0	Fish protein hydrolysate

- Two applications were made for a total of 80 lbs N/A
- Compared with 80 and 150 lbs N/A of UN32

Liquid Fertilizer Evaluation Soil Nitrate-N Over Crop Cycle

Standard = 150 lbs N/A; all other 80 lbs N/A

Liquid Fertilizer Evaluation Fresh Biomass

Standard = 150 lbs N/A; all other 80 lbs N/A

Substituting Liquid Organic Fertilizers for Dry

- Given high residual soil N where only moderate amounts of N are needed to achieve maximum yield – could liquids finish out the crop economically??
- Given the excellent performance of the new generation of liquid fertilizers, could they provide a viable fertilization option?

Substituting Liquid Organic Fertilizers for Dry

Material	Cost/lb N	Cost/40 Ibs N	Efficiency of N release
Hydrolysates	\$13-18	\$520-720	70-80+
Traditional Liquids	\$9-10	\$360-400	70-80+
4-4-2 dry	\$3.50	\$140	55

Does the new liquid organic fertilizer technology open new opportunities for making more precise N applications??

Acknowledgements

- Cooperating growers
- Crop consultants
- Student Assistants
- Funding provided by FREP

Input of Carbon

Material	Biomass	Carbon	Total
	lbs/A	content	carbon
		percent	lbs/A
Compost	10,000 ¹	29%	2,146
Cover crop	6,000	44%	2,640
4-4-2	5,400 ²	29%	1,566
2 baby crops @ 3000 each			
8-5-1	5,000 ³	41%	2,050
1 broccoli crop			

- 1 10,000 lbs/A @ 74% oven dry weight
- 2 6000 lbs/A (2 baby crops @ 3000 lbs/A each) @ 90% oven dry weight;
- 3 5650 lbs/A @ 90% oven dry weight

Comparison of 20 Pairs of Conventional and Organic Fields

Soil Constituent	Conventional	Organic
Organic Matter %	2.0	2.1
Total Nitrogen %	0.12	0.12
Phosphorous (Olsen) ppm	37	39
Water Extractable Organic N ppm	14	17
FDA Enzyme kg/hr	12	19

4-4-2

Percent Phosphorus Removed from Pouches Buried vs Surface

