Root Knot Nematode of Tomatoes; Evaluation of Non-fumigant Nematicides

Joe Nunez UCCE Kern

2017 Nematicide Evaluation Trial

The treatments were as follows:

1. Control

2. Velum 6.5 fl oz/A

3. Nimitz 5 pts/A 7-10 days before planting

4. Salibro 30.7 fl oz/A

Nematode Root Gall Rating

Treatment	Rating
1. Control	8.0 A
2. Velum	3.6 B
3. Nimitz	1.4 B
<u>4 Salibro</u>	2.5 B
Probability=	
0.0019	
%CV=	54.48
LSD _{P=0.05}	2.905

Treatment 3 was applied on 4/24/17 and the others applied at planting on 5/1/17.

Only a single application pre-plant or at planting was applied for each treatment.

Five roots per plot were harvested the week of 8/7/17 and evaluated for rootknot nematode galling.

Roots were rated on a scale of 1 to 10 with 1 being no visible galling and 10 the roots being over 90% galled.

Nimitz Tomato Trial

Nematode Rating (1 to 10)

1. Control	4.9
2. Nimitz 3.5 pt/A @ planting	3.1
3. Nimitz 5 pt/A @ planting	4.5
4. Nimitz 7 pt/A @ planting	3.8
5. Nimitz 5 pt/A @ 7-10 before planting	2.7
5. Nimitz 5 pt/A @ 7-10 before planting Probability	<u>2.7</u> 0.3531

Class Comparison for Nimitz Tomato Trial

Control vs All Nimitz Treatments Sum of Squares = 7.618 Probability = 0.164

Control vs 2. Nimitz 3.5 pt/A @ planting Sum of Squares = 8.100 Probability = 0.152

Control vs 3. Nimitz 5 pt/A @ planting Sum of Squares = 0.400 Probability = NS

Control vs 4. Nimitz 7 pt/A @ planting Sum of Squares = 3.136 Probability = NS

Control vs 5. Nimitz 5 pt/A @ 7-10 before planting Sum of Squares = 12.100 Probability = 0.084

Nimitz Carrot Trial

1. Control	1.8
2. Nimitz 3.5 pt/A @ planting	1.4
3. Nimitz 5 pt/A @ planting	1.3
4. Nimitz 7 pt/A @ planting	2.6
5. Nimitz 5 pt/A @ 7-10 before planting	0.7
Probability	0.0632
	0.0632 59.79

Class Comparison for Nimitz Carrot Trial

Control vs All Nimitz Treatments Sum of Squares = 0.397 Probability = NS

Control vs 2. Nimitz 3.5 pt/A @ planting Sum of Squares = 0.400 Probability = NS

Control vs 3. Nimitz 5 pt/A @ planting Sum of Squares = 0.576 Probability = NS

Control vs 4. Nimitz 7 pt/A @ planting Sum of Squares = 1.444 Probability = 0.218

Control vs 5. Nimitz 5 pt/A @ 7-10 before planting Sum of Squares = 3.249 Probability = 0.073

2018 Plans

- Evaluate rotation of nematicides
 - Nimitz pre-plant followed by Salibro post-plant
 - Nimitz pre-plant followed by Velum post-plant
- Evaluate applications of transplants with nematicides

- Southern blight is favored by:
 - high temperatures (over 86°F)
 - high soil moisture
 - dense canopies
 - frequent irrigation

- Sclerotium rolfsii
- Survives in soil as hardened structures called sclerotia for at least five years.
- Each infected plant can literally produce tens of thousands of sclerotia.
- A host range of over 500 plants

- Southern blight misdiagnosis
 - is likely if it occurs in areas not known to have previous history.
 - Easily confused with other crown rot diseases.
 - Sclerotia not always present, especially with tomatoes.

- There are effective fungicides
 - flutolanil, penthiopyrad, and tebuconazole
 - Issue is getting fungicides where it is need and when its needed.
- Crop Rotations-limited due to wide host range.
- Soil Fumigation
 - Metam sodium-shank injection not effective. Must be flooded, surface drip or sprinkler applied.

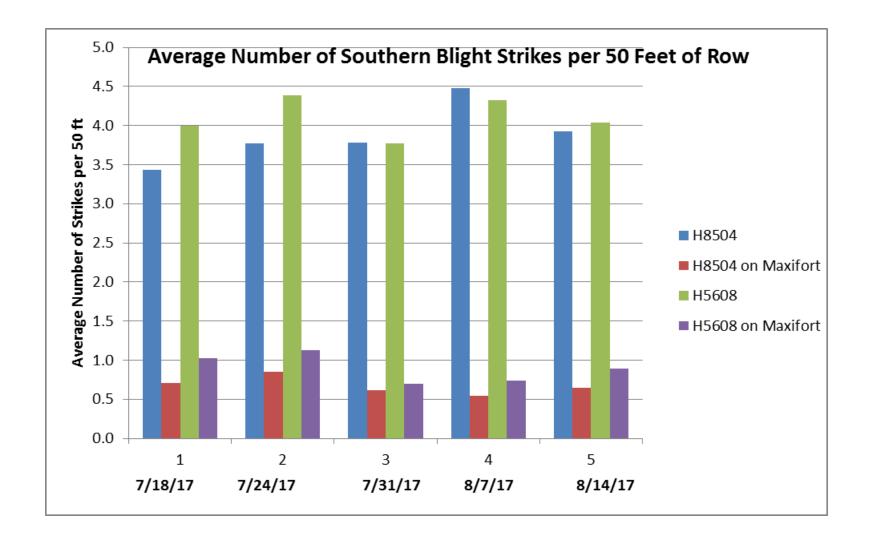
Use of Tomato Resistant Rootstock

- Big Power, Beaufort and Maxifort shown to have excellent resistance to southern blight.
- Commonly used now by fresh market tomato growers in South East US and Mexico.
- Grafting Tomato with Interspecific Rootstock to Manage Diseases Caused by Sclerotium rolfsii and Southern Root-Knot Nematode

C. L. Rivard, North Carolina State University, Department of Plant Pathology, Raleigh, NC 27695; **S. O'Connell,** North Carolina State University, Department of Horticultural Science, Raleigh, NC 27695; **M. M. Peet,** North Carolina State University, Department of Horticulture Science, Raleigh, NC 27695; and **F. J. Louws,** North Carolina State University, Department of Plant Pathology, Raleigh, NC 27695 Southern Blight Trial at Boswell 2017 – harvest data 9/18/2017

Table 1. Tomato fruit yield of rootstock trial.

Average Weight in Lbs per plot (600 ft x 5 ft)


1.	H8504	1331.1 AB
2.	H8504 on Maxifort rootstock	1638.9 A
3.	H5608	1214.3 B
4.	H5608 on Maxifort rootstock	1644.9 A
	Probability	0.0678
	Probability % CV	0.0678 23.58
	,	

Contrast Comparisons

Normal transplant versus on Maxifort rootstock

Sum of Squares=953865.143

Probability = 0.011

Conclusions

- Resistant rootstocks are effective in managing Southern Blight.
- These rootstocks may solve many other soilborn issues.
- Costs of producing tomato seedlings with resistant rootstock is the major issue.
 - Commonly used in fresh market tomatoes.

Thank You!

- Thanks to California Tomato Research Institute
- Boswell Farms
- Alex Putman, Plant Pathologist UC Riverside
- Naltalie Solares, Grad Student UC Riverside
- Jed DuBose, UCCE-Kern
- Sophia Marin, UCCE-Kern