Early Season and Summer Water Management in Walnut

Bruce Lampinen, Extension Specialist, Department of Plant Sciences, UC Davis

Things I will cover

- Impacts of water management on canopy growth, yield and quality in walnut
 - When should you start irrigating in spring
 - Possible ways to save water without hurting or even improving returns
 - If you have limited water, how should you allocate it?
 - Young orchards?
 - Older productive blocks?
 - Impacts of water stress and excessively wet conditions on nut quality
 - Leaf symptoms of under and over-irrigation

When should you start irrigating in the spring?

Early season water management and physiological indicators for irrigation management in walnut

Objectives:

Field test four levels of SWP for the start of irrigation in the spring.

Why?

Irrigation is a compromise between too wet for root health and too dry for maximum production. Grower concern not to "fall behind" in the spring may lead to a syndrome of shallow roots and unhealthy trees. We need plant-based (SWP) information on when to start irrigating in the spring.

Objective 1: Investigate impacts of date of start of irrigation on productivity in walnut Pls: Ken Shackel, Allan Fulton, Bruce Lampinen 9 year old Chandler/Pdx orchard in Tehama County RCBD, 5 blocks, 5 irrigation treatments:

- Grower
- Or wait for:
- 1 bar below baseline
- 2 bars below baseline
- 3 bars below baseline
- 4 bars below baseline before starting irrigation, then irrigate as Grower. Question:
- Will a later start date mean that the trees will always be "behind?"

Monitor: Irrigation amounts, soil water, SWP, PAR, Yield/Quality, Tree health

Detail: Grower and 1 bar were started at the same time (late April). But the non-irrigated 'control' group showed that a clear divergence from baseline didn't start until about a month later!

2014 Results: Cumulative applied irrigation

Date, 2015

Date, 2015

Date, 2015

Orchard demand (ET_c) and applied irrigation

Pattern of water depletion with soil depth in May: Peak activity at shallow depths in Grower compared to other treatments.

Average change in water content (inches/foot)

Treatment yield data

2014	Plot Yield (tons/ac)		e sample nut weight (g)		Plot PAR		Plot Yield/PAR	
Treatment	tons/ac	(% Grower)	Weight	(% Grower)	PAR	(% Grower)	Y/P	(% Grower)
1 bars below	1.85	100	10.3a	98	86	102	0.022	98
Grower	1.84	100	10.4a	100	84	100	0.022	100
2 bars below	1.72	93	10.1ab	97	88	104	0.020	90
3 bars below	1.71	93	9.4 bc	91	85	101	0.020	91
4 bars below	1.68	91	9.1 c	87	88	104	0.019	88

2015	Plo (to	ot Yield ons/ac)	Tree sam	ple nut weight (g)	Plot PAR		Plot Yield/PAR	
Treatment	tons/ac	(% Grower)	Weight	(% Grower)	PAR	(% Grower)	Y/P	(% Grower)
Grower	2.58 a	100	9.42a	100	89.3	100	0.027 a	100
1 bars below	2.49 ab	96	9.18ab	97	88.8	99	0.028 ab	97
2 bars below	2.26 ab	87	9.22ab	98	90.8	102	0.025 ab	85
3 bars below	2.18 ab	84	8.89 b	94	89.1	100	0.024 ab	84
4 bars below	2.09 b	81	8.44 c	90	89.9	100	0.023 b	80

Treatment nut quality data

	Treatment	Nut weight (g)	LgJm (%)	LgSd (%)	Shrivel (%)	Mold (%)	OffGr. (%)	Ex. Lt. (%)	RLI	Relative Value
	Grower	10.4 a	78.7 a	78.9 a	2.8	1.6	2.3	60	53.5	0.88
2014	1 bars below	10.3 a	76.9 ab	77.8 a	2.6	2.1	2.8	63	54.2	0.89
	2 bars below	10.1 ab	75.1 ab	76.0 a	1.7	2.2	2.5	59	54.1	0.90
	3 bars below	9.4 bc	61.1 bc	62.9 ab	2.0	1.3	1.9	56	53.1	0.88
	4 bars below	9.1 c	49.2 c	52.0 b	2.6	1.6	2.2	61	53.8	0.89

	Treatment	Nut weight (g)	LgJm (%)	LgSd (%)	Shrivel (%)	Mold (%)	OffGr. (%)	Ex. Lt. (%)	RLI	Relative Value
	Grower	9.4 a	63 a	68 a	2.4	0.9	1.6	47	54.8	0.92
2015	1 bars below	9.2 ab	59 a	63 a	2.3	0.8	1.3	52	55.2	0.91
2010	2 bars below	9.2 ab	59 a	65 a	2.1	1.1	1.6	43	55.1	0.91
	3 bars below	8.9 b	54 ab	58 ab	2.6	1.3	2.0	40	54.9	0.93
	4 bars below	8.4 c	44 b	48 b	2.5	1.5	2.2	43	54.5	0.93

2014 results summary

Treatment	% ET _c Applied	% water savings over grower	% yield loss compared to grower
Grower	94		
1 bar	82	12	1
2 bar	73	21	7
3 bar	58	27	8
4 bar	59	27	8

2015 results summary

Treatment	% ET _c Applied	% water savings over grower	% yield loss compared to grower
Grower	71	0	
1 bar	59	17	4
2 bar	51	28	13
3 bar	47	34	16
4 bar	53	25	19

Results: Seasonal (SWP-Baseline)

Midday SWP (difference from baseline)

Midday SWP (difference from baseline)

Nut size & SWP in June (individual trees) $r^2 = 0.67^{***}$

California walnut production by year

<1 ton/acre potential production

~ 4 tons/acre potential production

Drought impacts more severe now

Future drought related cutbacks can potentially have much larger impacts than in previous droughts- Impact on your orchards will depend on winter rainfall and canopy cover/productivity 1991-1992

> State Water Project water deliveries were 50% of normal Average walnut orchard was producing 1.25 tons/acre so would have required about 17 inches of water

2015

Average walnut orchard produced about 2 tons/acre so would require about 34 inches of water Best orchards producing about 4 tons/acre so would require about 56+ inches of water

If State Water project delivered 50% of normal Average orchard deficit 1991-1992 = 8.5 inches Average orchard deficit 2015 = 17 inches Best orchard deficit 2015 = 22 inches Chandler Pruning Trial- Nickels Soil Lab

(in collaboration with Janine Hasey)

Planted in 2008 at 15' x 22' spacing Nursery budded on Paradox seedling Pruning treatments imposed March 2009 Treatments

> Heavily pruned Minimally pruned Unheaded/unpruned

Year

Unpruned

Minimally pruned

Water use efficiency for pruned versus unpruned treatments Years 2-6 summary

Treatment	Total water needed based on canopy size (years 2-6)	Cumulative yield (tons/acre)	Water use efficiency expressed as pounds of walnuts produced per inch of water applied	Water use efficiency (% of unpruned)
Unpruned	134	6.51	97	100
Minimally pruned	156	5.93	76	78
Heavily pruned	142	5.20	73	75

Not pruning can increase water use efficiency in years 2-6 by 20 to 25%

Influence of Water Relations on Canopy Development and Yield Potential

Stress that impacts canopy development in early life of orchard can impact production for many years

10%

increase

per year

in both

after year 2

	Fully watered	8%decreas	se in year 2	
Year 3	30%	(1.5 tons/ac)	22% (1.1 tons/ac)	
Year 4	40%	(2.0 tons/ac)	32% (1.6 tons/ac)	
Year 5	50%	(2.5 tons/ac)	42% (2.1 tons/ac)	
Year 6	60%	(3.0 tons/ac)	52% (2.6 tons/ac)	
Year 7	70%	(3.5 tons/ac)	62% (3.1 tons/ac)	
Year 8	80%	(4.0 tons/ac)	72% (3.6 tons/ac)	
Year 9	90%	(4.5 tons/ac)	82% (4.1 tons/ac)	↓
Year 4 Year 5 Year 6 Year 7 Year 8 Year 9	40% 50% 60% 70% 80% 90%	(2.0 tons/ac) (2.5 tons/ac) (3.0 tons/ac) (3.5 tons/ac) (4.0 tons/ac) (4.5 tons/ac)	32% (1.6 tons/ac) 42% (2.1 tons/ac) 52% (2.6 tons/ac) 62% (3.1 tons/ac) 72% (3.6 tons/ac) 82% (4.1 tons/ac)	

Total21 tons/ac18.2 tons/ac

This is equal to a cumulative difference of 2.8 tons/ac from one time stress event in year 2

This is equal to 224 tons (448,000lbs) less yield over first 9 years for an 80 acre orchard- this would have paid for a lot of \$5000 pressure chambers

Fig. 6. Midday canopy photosynthetically active radiation (*PAR*) interception for a growing 3-year-old 'Chandler' walnut orchard and a mature 10-year-old 'Howard' walnut orchard in Colusa County, CA, over the 2010 season. Both datasets were for replicated trials with six replications for each data point. Bars indicate ± 2 SE calculated using SAS Proc Means (SAS version 9.2; SAS Institute, Cary, NC).

Slower canopy development due to shortage or excess of water can have large impacts on returns

-\$8,250 per acre over 9 years

-\$14,850 per acre over 9 years

Seasonal average midday stem water potential (bars)

Irrigation management is critical for maximum productivity

- Deciding when to start irrigating in spring is an important decision made easier with the pressure chamber
 - Starting to irrigate later may provide benefits in terms of water saving and possibly increased rooting depth
- The less you prune in years 2-6, the higher the water use efficiency
- Stress from lack of water can result in major long term impacts on canopy size and yield
 - If you are short on water, you might want to consider biasing applications towards young orchards to prevent long term compounding of losses
- Either too much or too little water can lead to pellicle color problems
- Orchard water use will be directly related to canopy size and although orchards may have survived previous droughts, todays high light interception orchards may be more severely impacted

Appearance of a healthy walnut tree at a -5 to -7 bar midday stem water potential

Symptoms of stress from lack of water • At -9 bars, extension growth of shoots ceases (lose growing red leaves)

Symptoms of stress at -11 to -12 bar- yellowing and drop of inner canopy shaded leaves- leaf drop usually does not start until trees reach a midday stem water potential of about -11 to 12 bars

Interior leaf yellowing and drop may also occur due to shading without stress- this was the case here.

Shriveled hull indicates more severe stressusually about -13 to -16 bars (severe stress)

Leaf symptoms of over-irrigation in walnut- often on outer canopy leaves but can be anywhere

If secondary bud (near nut) does not start growing by mid-June it is usually because the tree is too wet **Typical appearance** of a tree that was too wet in springmay be water stressed later in summer due to compromised root system

Production problems related to irrigation

Too much water

- 1) Poor canopy growth
- 2) Nut quality problems
- 3) Sunburn
- 4) Tree dieback
- 5) Phytophthora root rot
- 6) Low levels of productivity per unit light intercepted

Too little water

- 1) Poor canopy growth
- 2) Nut quality problems
- 3) Sunburn

Leaf damage symptoms observed only on excessively wet trees

Questions?