University of **California** Agriculture and Natural Resources

Role of lygus bug in fruit deformity

IPM tools for managing lygus bug

Surendra Dara PhD, DAIT Strawberry and Vegetable Crops Advisor and Affiliated IPM Advisor University of California Cooperative Extension San Luis Obispo, Santa Barbara, and Ventura Counties <u>skdara@ucdavis.edu</u>

Central Coast Strawberry Meeting, Watsonville, 4 February, 2016

B

@calstrawberries @calveggies

strawberriesvegetables

berriesnveggies.tumblr.com

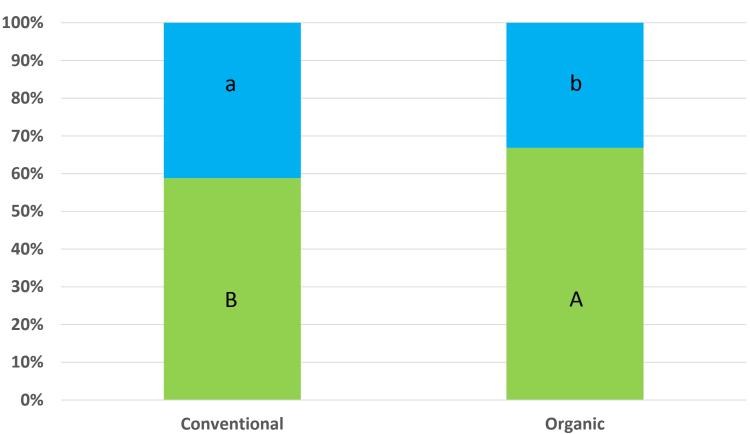
eNewsletters: ucanr.edu/strawberries-vegetables and ucanr.edu/pestnews Download the free iOS app "IPMinfo" about strawberry pests and diseases

Strawberry fruit deformation

Strawberry fruit deformation

Fruit deformity to due lygus bug damage

Deformity due to poor pollination, genetic, environmental, and other factors


Role of lygus bug on fruit deformation

- Conventional (18) and organic (10) fields
- 9 Sampling dates
- 4 replications (different parts of the field)
- At least 100 deformed berries/replication

Role of lygus bug on fruit deformation

Percent deformity from lygus bug damage and other causes

Lygus Other

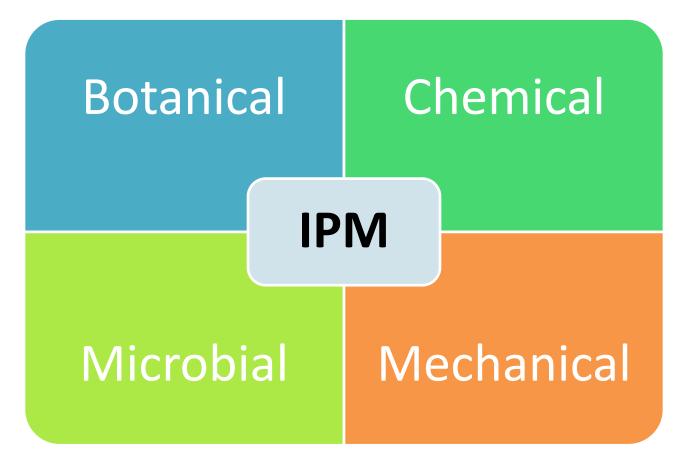
Conclusions

- In both conventional (59%) and organic (67%) fields majority of the deformity was related to lygus bug feeding
- Lygus-related damage was significantly higher in organic fields and damage due to other factors was significantly higher in conventional fields
- Sampling for lygus is the most reliable way to make treatment decision

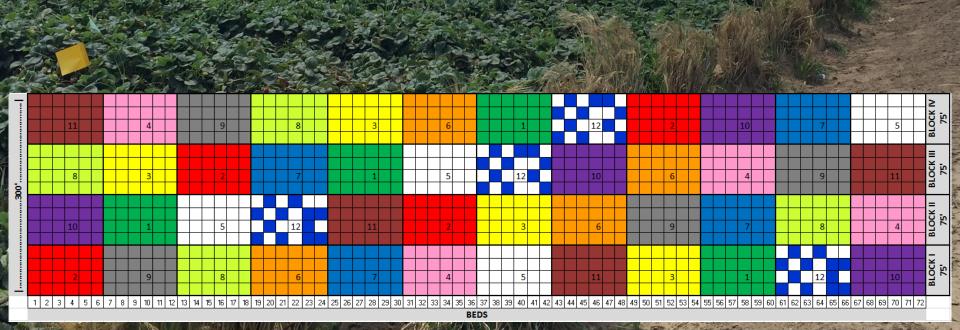
Grower

Dave Peck, Manzanita Berry Farms Daren and Kevin Gee, DB Specialty Farms

Technical assistance Fritz Light Tamas Zold



Decision making for pest management


IPM Tools for Strawberries

2015 Strawberry IPM trial

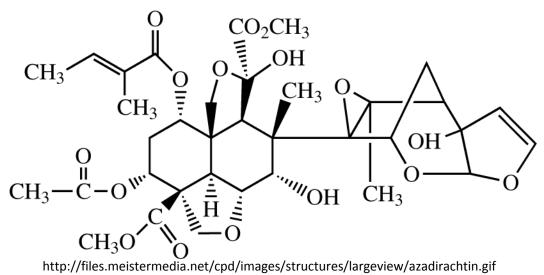
Sundance Berry Farms, Santa Maria

Chemicals-Mode of action groups

3A Pyrethrins-Sodium channel modulators

- 4A Neonicotinoids
- 4C Sulfoximines
- **4D** Butenolides

- Nicotinic acetylcholine receptor competitive modulators
- **9C** Flonicamid Modulators of chordotonal organs
- **15** Benzoylureas Inhibitors of chitin biosynthesis

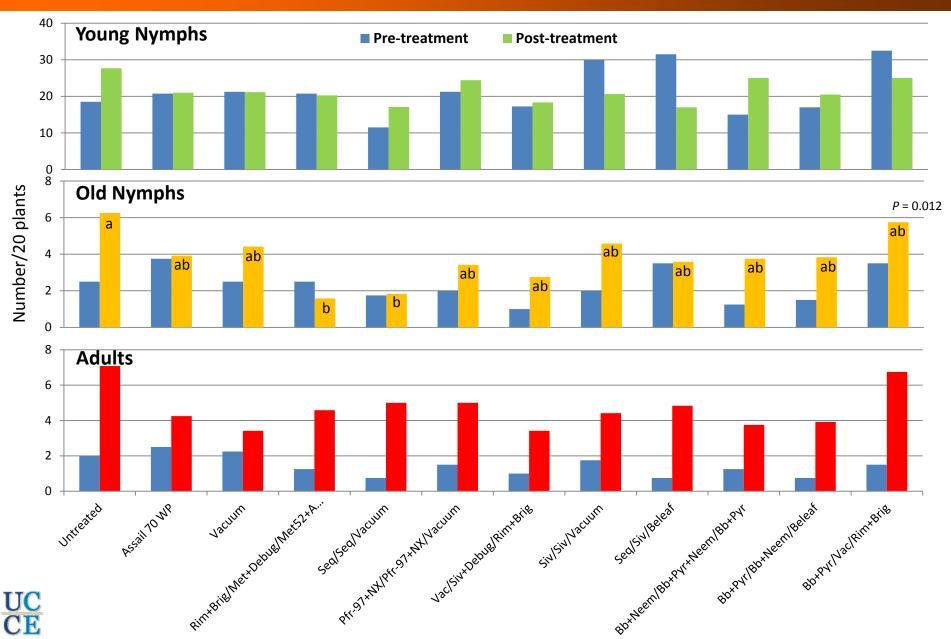


Non-chemical alternatives

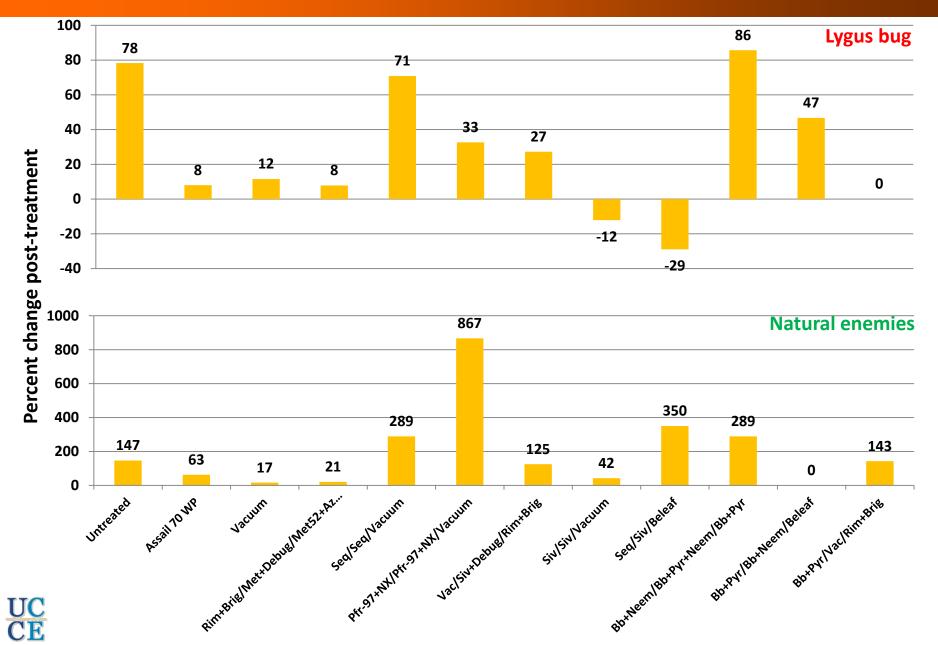
- Entomopathogenic fungi, *Beauveria* bassiana, Isaria fumosorosea, and Metarhizium brunneum
- Botanical insect growth regulator, azadirachtin
- Mechanical removal vacuuming

Azadirachtin mode of action

- Interferes with protein synthesis
- Affects molting and metamorphosis
- Disturbs mating and sexual communication
- Sterilizes adults
- Reduces reproductive ability
 - Acts as antifeedant and repellent

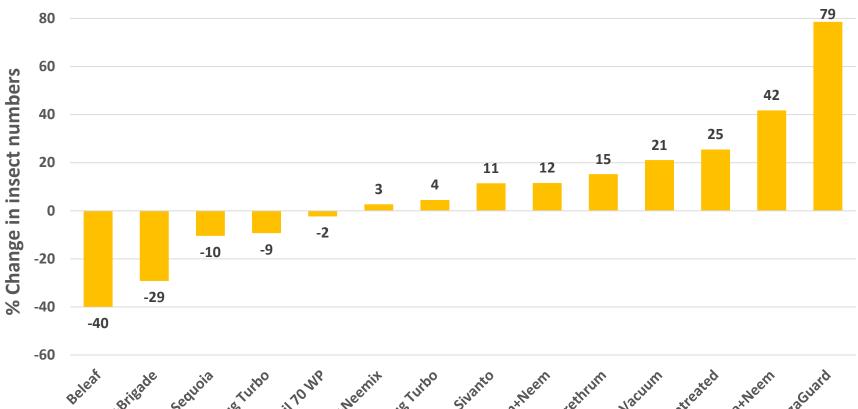

Lygus bug management study

	1 st application (Rate/acre)	2 nd applicatior	ı (Rate/acre)	3 rd application (Rate/acre)	
1	Untreated	Untreated		Untreated	
2	Assail 70 WP (3 oz) 4A*	Assail 70 WP (3 oz) 4A	N	Assail 70 WP (3 oz) 4A	
3	Vacuum	Vacuum		Vacuum	
4	Rimon 0.83 EC (12 fl oz) 15 + Brigade (16 oz) 3A	Met52 EC(16 fl oz) + Debug Turbo (104 fl oz)		Met52 EC (16 fl oz) + AzaGuard (16 fl oz)	
5	Sequoia (4.5 oz) 4C	Sequoia (4.5 oz) 4C		Vacuum	
6	Pfr-97 (2 lb) + Neemix (9 fl oz)	Pfr-97 (2 lb) + Neemix (9 fl oz)		Vacuum	
7	Vacuum	Sivanto (14 fl oz) 4D + Debug Turbo (104 fl oz)		Rimon 0.83 EC (12 fl oz) 15 + Brigade (16 oz) 3A	
8	Sivanto (14 fl oz) 4D	Sivanto (14 fl oz) 4D		Vacuum	
9	Sequoia (4.5 oz) 4C	Sivanto (14 fl oz) 4D		Beleaf 50 SG (2.8 oz) 9C	
10	<i>B. bassiana</i> +neem (1qrt)	<i>B. bassiana</i> +pyrethrum 3A +neem (1qrt)		<i>B. bassiana</i> +pyrethrum 3A (1qrt)	
11	<i>B. bassiana</i> +pyrethrum 3A (1qrt)	B. bassiana+neem (1q	ırt)	Beleaf 50 SG (2.8 oz) 9C	
12	<i>B. bassiana</i> +pyrethrum 3A (1qrt)	Vacuum		Rimon 0.83 EC (12 fl oz) 15 + Brigade (16 oz) 3A	
*MoA	group 3A Pyrethrins-Sodium channel mo	dulators	4A Neonicotinoids4C Sulfoximines4D Butenolides	<pre>Nicotinic acetylcholine receptor competitive modulators</pre>	
CE	9C Flonicamid – Modulators of cho	rdotonal organs	15 Benzoylureas - Inhibitors of chitin biosynthesis		


Treatments and sampling

- Treatments applied on 26 August, 2 and 9 September, 2015
- Vacuuming was done twice a week only in vacuum treatments
- Spray volume was 100 gpa for all treatments
- Sampled 6 days after each application

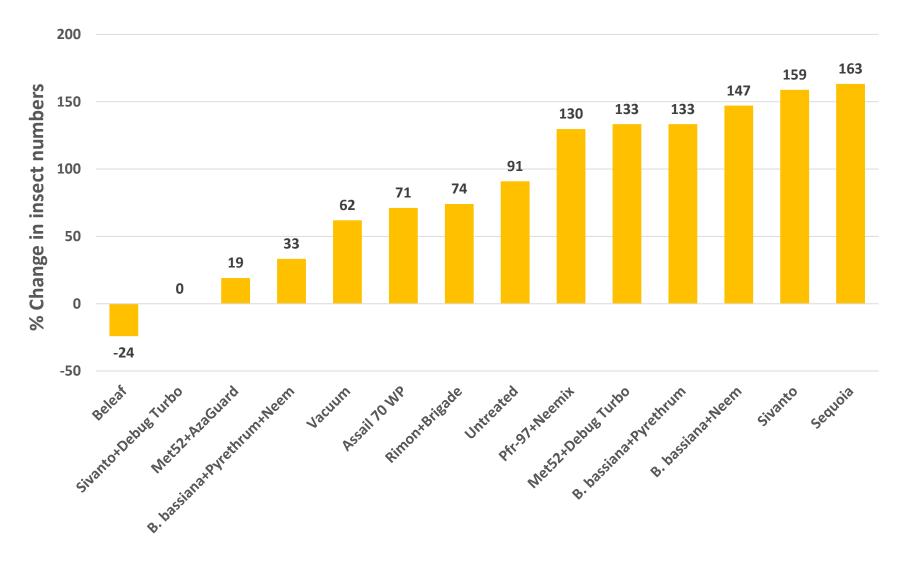
Lygus life stages after three applications

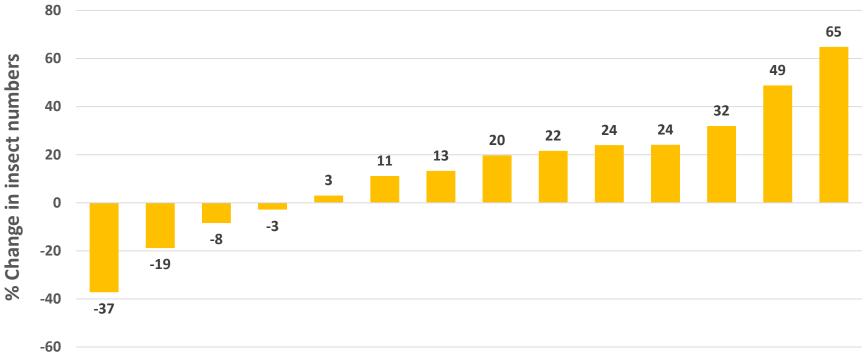

Change in lygus and natural enemy populations

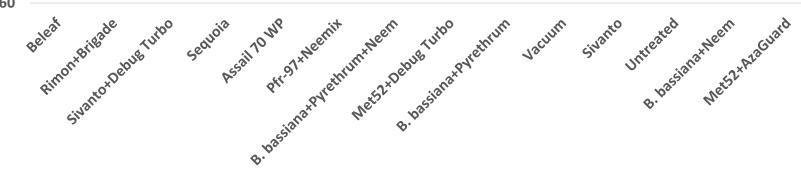


Treatment efficacy

Rank	% Change	l Spray	II Spray	III Spray
I	-28.9	Sequoia (4.5 oz) 4C*	Sivanto (14 fl oz) 4D	Beleaf 50 SG (2.8 oz) 9C
Ш	-12.1	Sivanto (14 fl oz) 4D	Sivanto (14 fl oz) 4D	Vacuum
ш	0.0	<i>B. bassiana</i> +pyrethrum 3A (1qrt)	Vacuum	Rimon 0.83 EC (12 fl oz) 15 + Brigade (16 oz) 3A
IV	7.8	Rimon 0.83 EC (12 fl oz) 15 + Brigade (16 oz) 3A	Met52 EC(16 fl oz) + Debug Turbo (104 fl oz)	Met52 EC (16 fl oz) + AzaGuard (16 fl oz)
V	8.0	Assail 70 WP (3 oz) 4A*	Assail 70 WP (3 oz) 4A	Assail 70 WP (3 oz) 4A
VI	11.5	Vacuum	Vacuum	Vacuum
VII	27.3	Vacuum	Sivanto (14 fl oz) 4D + Debug Turbo (104 fl oz)	Rimon 0.83 EC (12 fl oz) 15 + Brigade (16 oz) 3A
VIII	32.7	Pfr-97 (2 lb) + Neemix (9 fl oz)	Pfr-97 (2 lb) + Neemix (9 fl oz)	Vacuum
IX	46.8	<i>B. bassiana</i>+pyrethrum 3A(1qrt)	<i>B. bassiana</i> +neem (1qrt)	Beleaf 50 SG (2.8 oz) 9C
Х	70.8	Sequoia (4.5 oz) 4C	Sequoia (4.5 oz) 4C	Vacuum
XI	78.3	Untreated	Untreated	Untreated
XII	85.7	<i>B. bassiana</i> +neem (1qrt)	<i>B. bassiana</i> +pyrethrum 3A +neem (1qrt)	<i>B. bassiana</i> +pyrethrum 3A (1qrt)


Product efficacy against lygus nymphs




Product efficacy against lygus adults

Product efficacy against all life stages

Conclusions

- Lygus infestations were very high and only two treatments reduced their populations and one treatment prevented their buildup
- Consider IPM strategy by using chemical, botanical, microbial, and mechanical tools

Grower and Team

Dave Murray, Sundance Berry Farms Ted Ponce

Industry Partners

Agro Logistics Systems, Arysta LifeScience, Bayer CropScience, BioSafe Systems, Certis USA, Dow AgroSciences, Helena Chemicals, Laverlam International Corp., and Monsanto BioAg

Technical assistance

Sundance Berry Farms field crew Chris Martinez Fritz Light Kristin Nicole Stegeman Tamas Zold

Full articles of these studies can be found at <u>http://ucanr.edu/strawberries-vegetables</u>

