Water management under drought cutbacks

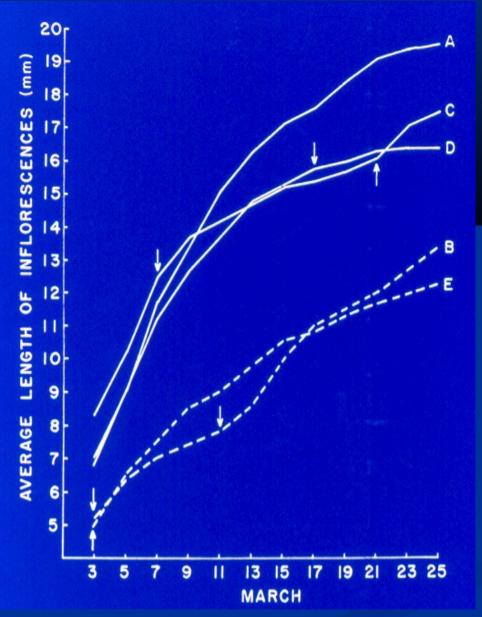
Joe Connell, Farm Advisor, Butte County

University of California

Olive bearing habit

- olives bloom on one year old shoots
- over-cropping:
 - decreases fruit size
 - decreases shoot growth
 - decreases flowering next season
 - aggravates alternate bearing

Relationship between olive tree growth and production

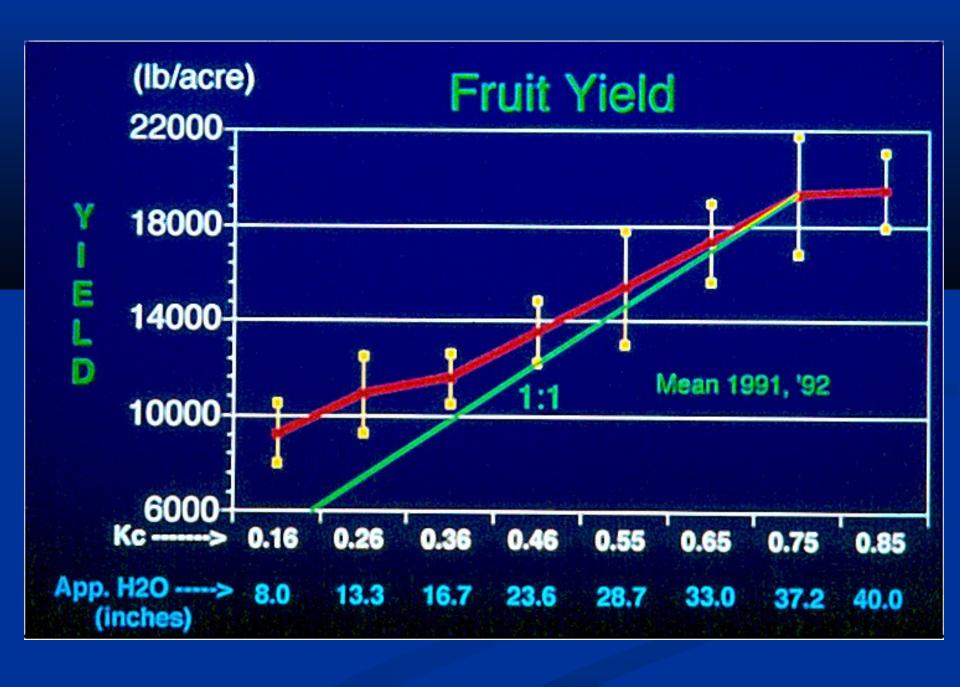

- Farm with two seasons in mind
 - produce a moderate, high quality current crop
 - generate sufficient vegetative growth for next season's bloom and crop
 - minimizes alternate bearing
- Practice fruit thinning in the heavy crop year
 - Improves size, can help generate shoot growth if water is short

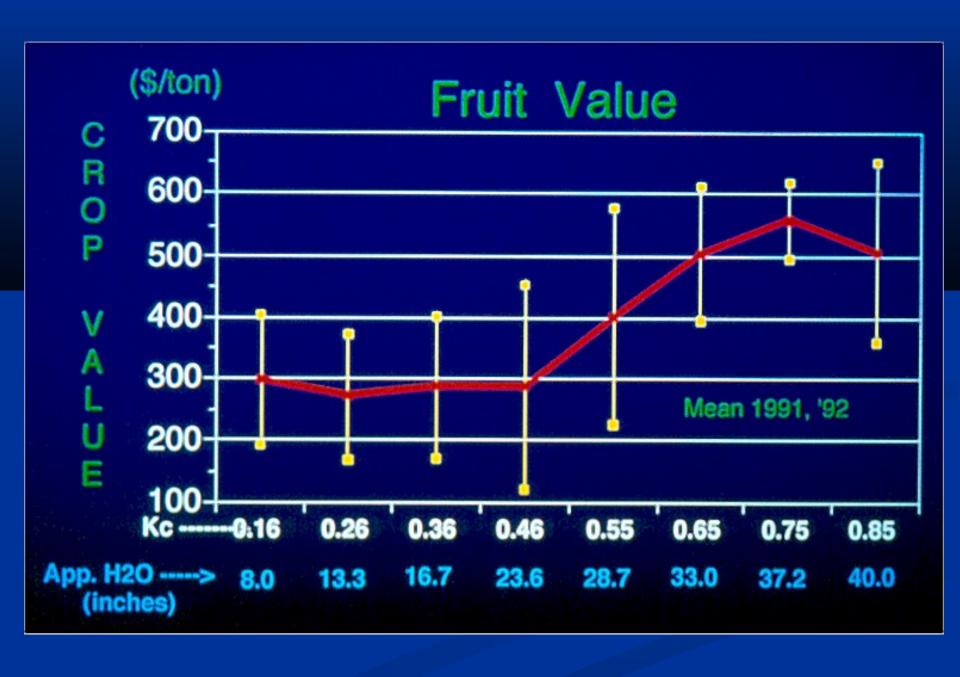
- shoot growth & bloom
- fruit sizing
- total yield
- alternate bearing

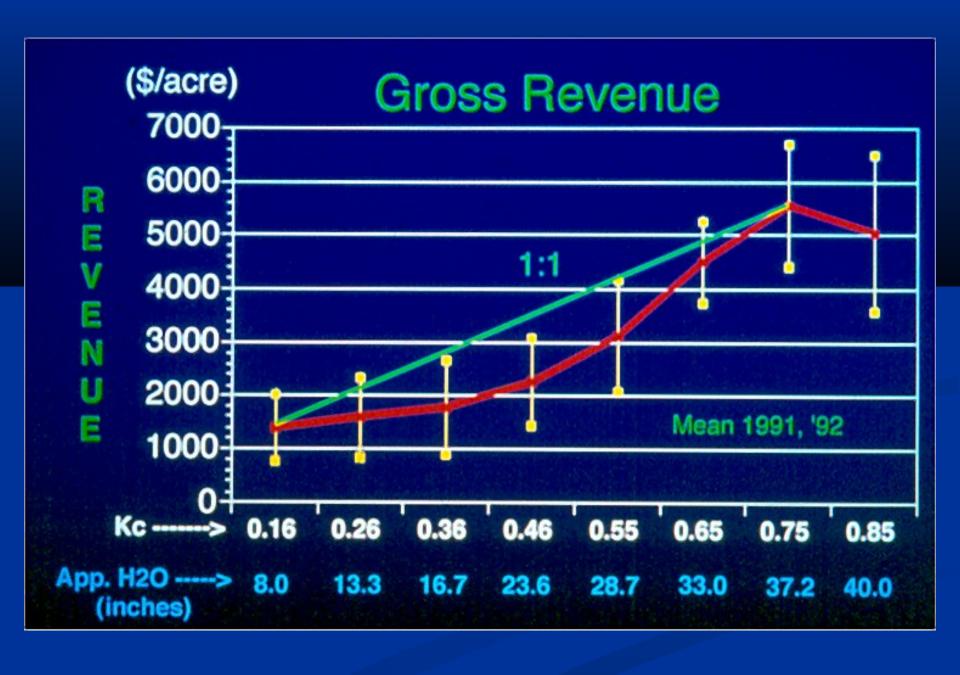
Inflorescence growth vs. timing of March water stress

- A -- Continuous ample soil moisture.
- C -- Moisture deficit in mid-March, at intermediate flower development.
- D -- Moisture deficit in late March.
- B -- Moisture deficit in early March, an early stage of flower development.
- E -- Continuous moisture deficiency.

Source: Dr. H.T. Hartmann UCD Pomology


Early spring water stress effects on Barouni olives


Water Stress <u>Timing</u>	% Leaf <u>Drop</u>	# Flowers/ Inflorescence	% Perfect Flowers	# Fruits / 100 Inflorescences
Control (No stress)	2.8	15.7	27.4	3.3
3/3-3/11	12.2	4.9	65.4	4.3
3/7-3/21	8.4	8.7	4.0	0.1
3/18-4/4	4.8	8.3	9.3	0.6
3/1-4/4	12.5	6.7	0.6	0.3
P = .05		3.2	21.4	


Source: Dr. H.T. Hartmann
UCD Pomology

Dr. Goldhammer, Irrigation Specialist, UC KAC, early 1990's Narrow Differential Irrigation Trial

Percent of Control	(Kc) Crop Coefficient	Applied Water Acre-in/Acre
25%	.16	8.9
40%	.26	14.2
55%	.36	19.5
70%	.46	24.9
85%	.55	30.2
100%	.65	35.5
115%	.75	40.8
130%	.85	46.2

Summary

- Olive crop coefficient (Kc) 0.65-0.75
- Orchard water use (ETc)
 - 36 to 41 acre-in/acre in Sac & SJV
- More water improved gross revenue
 - up to 41 acre-in/acre

Summary

- Sustained deficit irrigation drastically reduces yield
 - Flowering is accelerated
 - Shoot growth is reduced
 - Fruit size -- most sensitive component
 - Fewer fruits & smaller sizes
- BUT, olive is drought tolerant
 - Tree will survive with little to no irrigation

Evapotranspiration (ET)

- Evaporation water evaporation from soil
- Transpiration water evaporation from leaves
- Climate
 - Solar Radiation ↑ ET ↑ (day length)
 - Humidity - ET
 - Temperature ↑ ET ↑
 - Wind ↑ ET ↑
- Tree canopy size (> 50% cover = 100% ET)

Calculating orchard water use (clean cultivated) in Orland

	ETo (inches)	<u>Kc</u>	ETc (inches)
March	3.1	0.75	2.3
April	4.8	0.75	3.6
May	6.7	0.75	5.0
June	7.4	0.75	5.6
July	8.8	0.75	6.6
August	7.3	0.75	5.5
September	5.6	0.75	4.2
October	3.8	0.75	2.9
November	1.7	0.75	1.3
TOTAL	49.2		37.0

WEEKLY SOIL MOISTURE LOSS IN INCHES

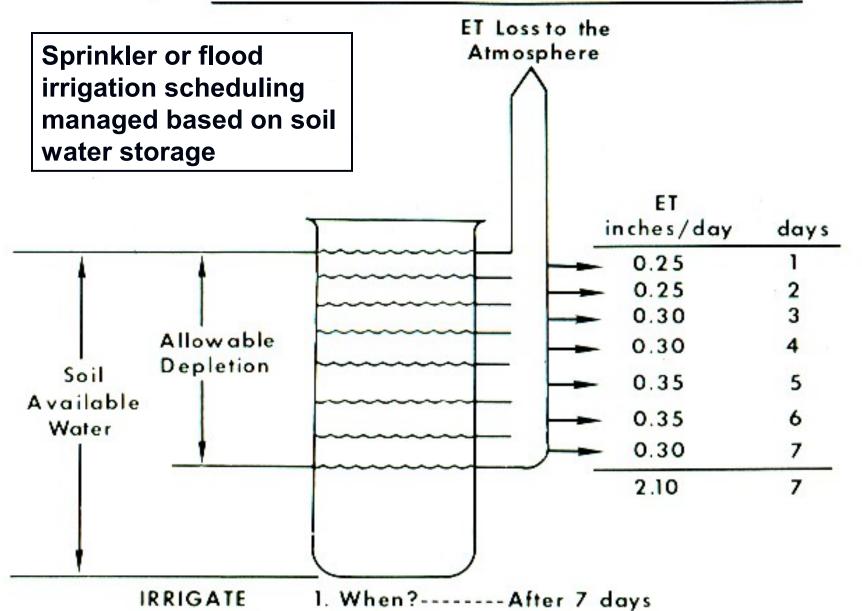
(Estimated Evapotranspiration)

08/05/05 through 08/11/05

۱	West of Sacramento River		River	East of Sacram	ento River
l	Weekly	Accum'd		Weekly	Accum'd
ı	Water	Seasonal	Crop	Water	Seasonal
ı	Use	Use	(Leafout Date)	Use	Use
ı	1.78	32.92	Pasture	1.63	30.66
l	1.71	31.81	Alfalfa	1.56	29.58
П	1.36	24.92	Olives	1.23	23.29
	1.16	21.50	Citrus	1.06	19.97
l	1.71	29.95	Almonds (3/1) *	1.56	27.80
	1.71	28.83	Prunes (3/15) *	1.56	26.73
	1.71	27.18	Walnuts (4/1) *	1.56	25.11
	1.53	30.19	Urban Turf Grass	1.42	28.24

WEEKLY APPLIED WATER IN INCHES1

50%	60%	<u>70%</u>	80%	90%	← Efficiency →	50%	60%	<u>70%</u>	80%	90%
2.7	2.3	1.9	1.7	1.5	Olives	2.5	2.1	1.8	1.5	1.4
2.3	1.9	1.7	1.5	1.3	Citrus	2.1	1.8	1.5	1.3	1.2
3.4	2.9	2.4	2.1	1.9	Almonds (3/1)	3.1	2.6	2.2	2.0	1.7
3.4	2.9	2.4	2.1	1.9	Prunes (3/15)	3.1	2.6	2.2	2.0	1.7
3.4	2.9	2.4	2.1	1.9	Walnuts (4/1)	3.1	2.6	2.2	2.0	1.7

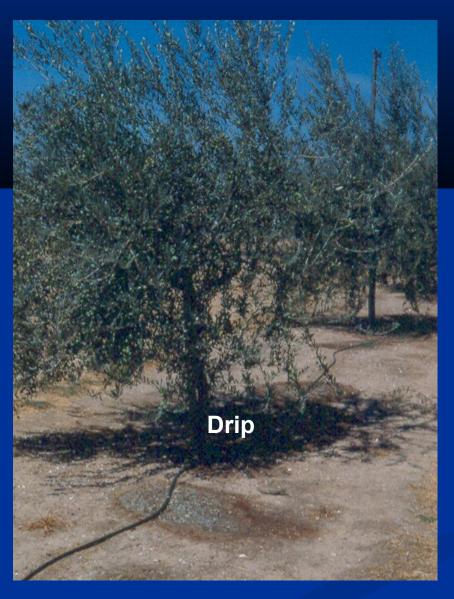

¹ The amount of water required by a specific irrigation system to satisfy evapotranspiration. Typical ranges in irrigation system efficiency are: Drip Irrigation, 80%-95%; Micro-sprinkler, 80%-90%; Sprinkler, 70%-85%; and Border-furrow, 50%-75%.

For further information, contact the Tehama Co. Farm Advisor's office at 527-3101.

ET data

- ETc local papers
- ETo DWR CIMIS websitewww.cimis.water.ca.gov

The Water Budget Method of Irrigation



2. How much?-- Apply 2.10 inches of water + losses (Efficiency consideration)

Control water applications with an efficient irrigation system

- Heavy cropping years:
 - Water more to promote shoot growth
 - No water deficit early in the season
 - Mature trees ~ 45 55% ETc
 - Young trees = full ETc
- Light cropping years:
 - Water less to save water
 - Usually plenty of shoot growth
 - Mature trees ~ 35 45% ETc
 - Young trees = full ETc

Low volume irrigation scheduling

- Use is determined by ET
- Drip or micro-sprinkler irrigation replaces what trees use every day or two
- Soil water holding capacity not important
- Keep emitters 2-3 feet away from trunk

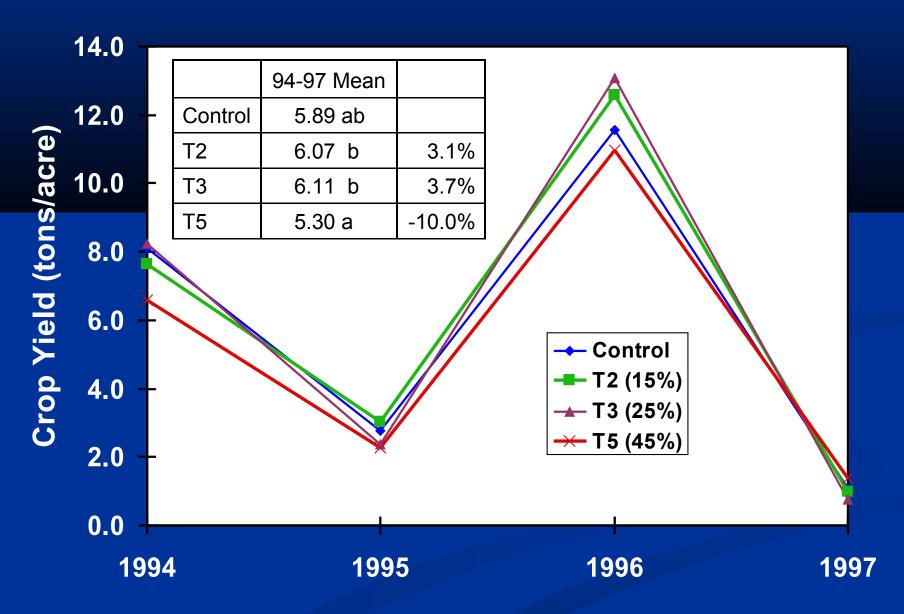
Low volume irrigation scheduling

- Determine how much water to apply
 - Crop ET climate, canopy size
 - Days between irrigations
- Determine how long to irrigate
 - ET between irrigations
 - Uniformity of irrigation system
 - Application rate of drippers or micro-sprinklers

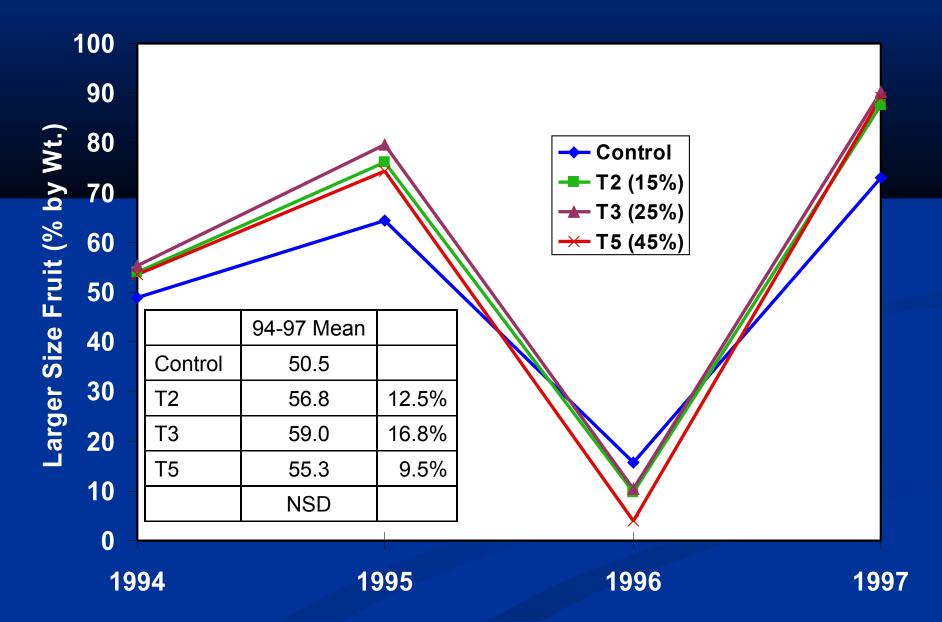
Low volume irrigation scheduling

- ETc 6.6 inches in July / 31 days = 0.21 inches/day
- Irrigated 2 days ago, assume ETc = 0.25 inch/day, must replace 0.5 inch of water use
 - 1acre inch = 27,154 gal / 2 = 13,577 gallons/half-inch
 - 22' x 22' = 90 trees/acre
 - 13,577 / 90 = 151 gallons per tree
- Determine how long to irrigate
 - Assume double line drip w/ eight, 1gal/hr emitters/tree
 - 151 gallons use / 8 gal/hr application rate = 19 hrs run time every other day

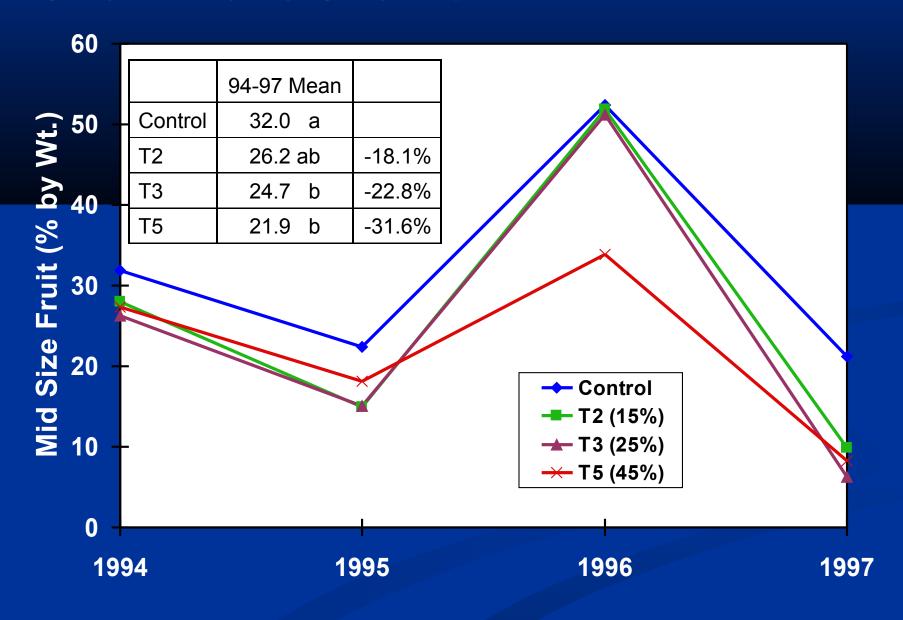
Dr. Goldhammer, Irrigation Specialist, UC KAC, mid 1990's

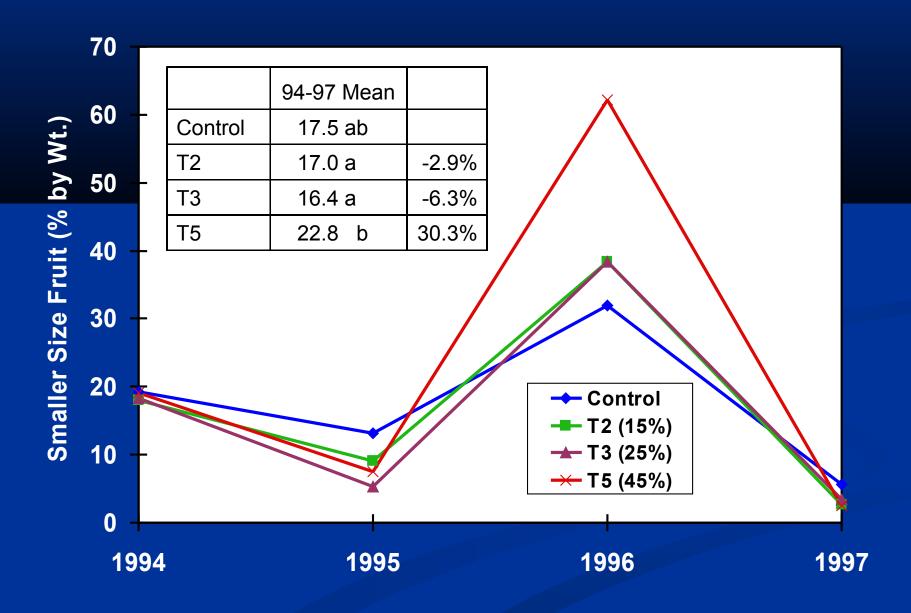

Regulated Deficit Irrigation trial

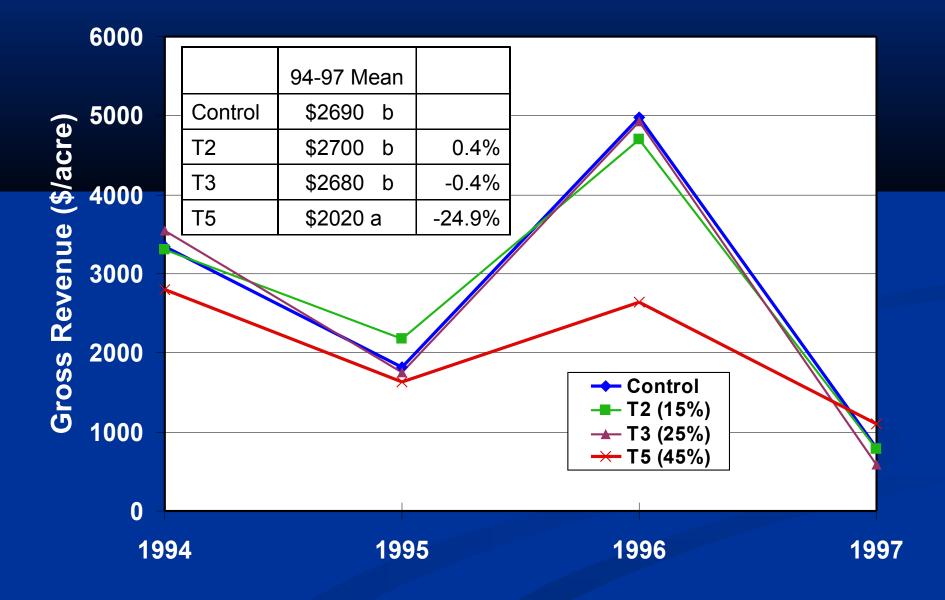
Irrigation Regime (% water saved)	Individual Fresh Fruit Wt. (g)	Fruit Load (#/tree)	Total Fruit Yield (tons/acre)	Crop Value (\$/ton)	Gross Revenue (\$/acre)
Control	4.12	19690	8.12	412	3340
T2 (13%)	4.15	18200	7.65	431	3310
T3 (21%)	4.11	20010	8.25	430	3580
T5 (40%)	4.23	16070	6.61	426	2800
	NSD	NSD	NSD	NSD	NSD


Regulated Deficit Irrigation, a controlled stress

Date	Treatment 1 Full ETc (in.)	RDI%	Treatment 2 Irrigation (in.)	RDI%	Treatment 3 Irrigation (in.)	RDI %	Treatment 5 Irrigation (in.)
Mar 1-15	1.2	100	1.2	100	1.2	100	1.2
Mar 16-31	1.2	100	1.2	100	1.2	100	1.2
Apr 1-15	1.8	100	1.8	100	1.8	100	1.8
Apr 16-30	1.8	100	1.8	100	1.8	100	1.8
May 1-15	2.3	100	2.3	100	2.3	100	2.3
May 16-31	2.5	100	2.5	100	2.5	50	1.3
Jun 1-15	2.9	100	2.9	50	1.5	50	1.5
Jun 16-30	2.9	50	1.5	50	1.5	25	0.7
Jul 1-15	3.1	50	1.6	50	1.6	25	0.8
Jul 16-30	3.3	50	1.7	50	1.7	25	0.8
Aug 1-15	2.7	100	2.7	50	1.4	25	0.7
Aug 16-31	2.8	100	2.8	100	2.8	50	1.4
Sep 1-15	2.0	100	2.0	100	2.0	50	1.0
Sep 16-30	2.0	100	2.0	100	2.0	100	2.0
Oct 1-15	1.2	100	1.2	100	1.2	100	1.2
Oct 16-31	1.3	100	1.3	100	1.3	100	1.3
Nov 1-15	0.5	100	0.5	100	0.5	100	0.5
TOTAL (in.)	35.5		31.0		28.3		21.5
Water Save	ed (in.)		4.6		7.4		14.0
Water Save	ed (%)		12.9%		20.8%		39.5%


Gross Fresh Fruit Yield


Jumbo + Ex. Large + Large + Medium Sizes


Small + Petite Size Fruit

Sub-Petite + Undersize + Cull Size Fruit

Gross Revenue

Summary

- ✓ Fruit growth slows during regulated deficit irrigation (RDI)
 - accelerates upon return to full irrigation
- ✓ RDI saved up to 21% (7.4 in) of normal water use (35.4 in)
 - no effect on fruit size

Summary

- ✓ Olive RDI is a strategy that can save water while maintaining good yield of high quality fruit
- ✓ MUST know what you're doing
 - good control of water applications

Dr. Steve Grattan, Irrigation Specialist, UC Davis, early 2000's Joe Connell, Farm Advisor, Butte County, Maria Jose Berenguer-Merelo

Narrow Differential Irrigation trial for Oil Olives

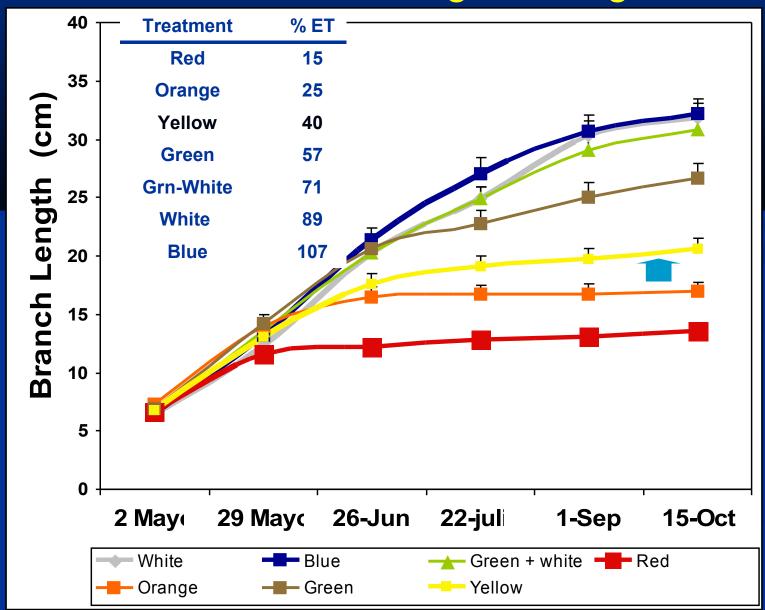
Treatment Color Code	Applied Water (gallons/tree)	% ET Treatment
Red	90	15
Orange	156	25
Yellow	313	40
Green	469	57
Grn-White	625	71
White	782	89
Blue	938	107

Increasing water

SHD Oil Olives

By July, tree density affected

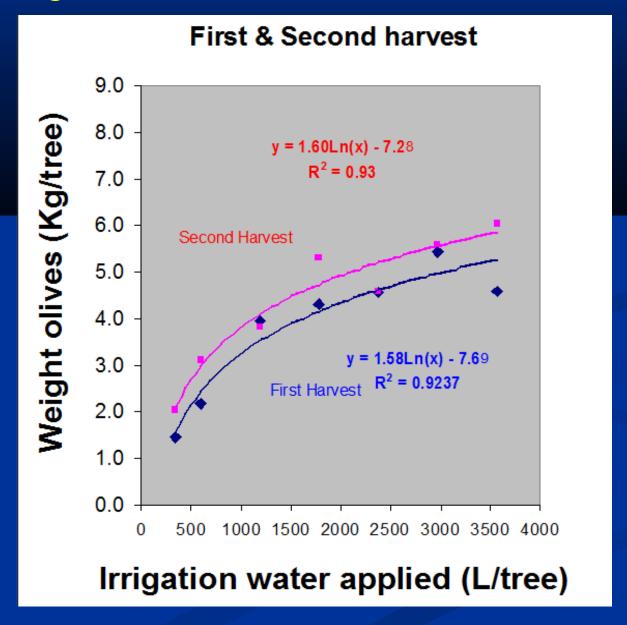
41% ET



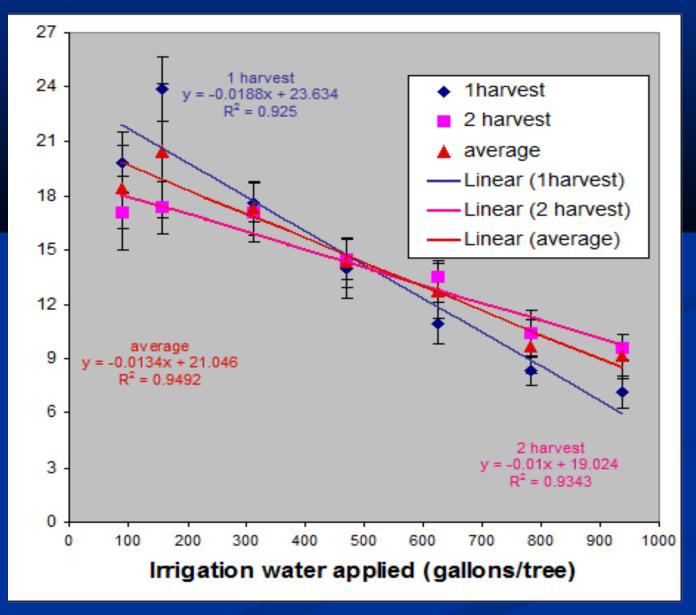
90% ET

107% ET

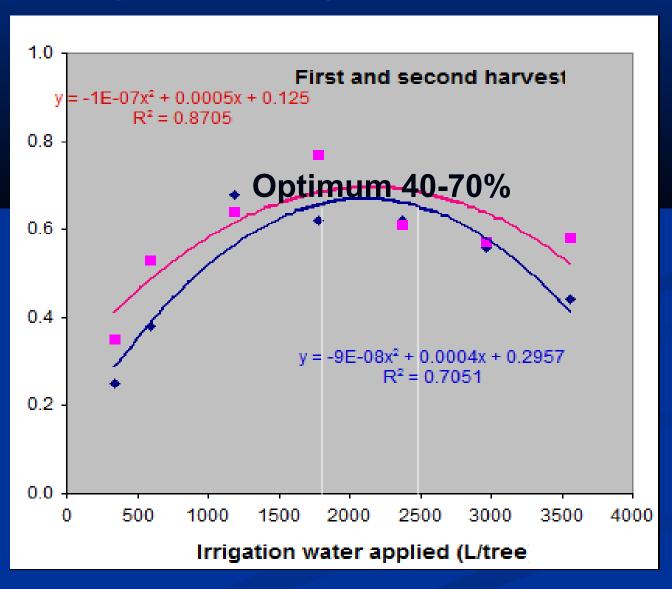
Water stress reduced vegetative growth



Water stress reduced fruit size



Driest Wettest


Fresh weight at October 31 & November 18 harvests

Percent oil content

Total oil production per tree

Best irrigation level for olive oil production ranges between 50 and 70% ET

- Higher crop yield
 - Makes up for less oil per fruit
- Good shoot growth
- Good return bloom

Paul Vossen, Farm Advisor, Sonoma Co. and Vito Polito, UC Davis

Fruitiness, bitterness, and pungency of olive oils as influenced by irrigation

Treatments	Fruitiness	Bitterness	Pungency
15% ET	3.6 a	6,0 ක	4.9 a
25% ET	3.2 b	4.2 b	3.9 b
40% ET	2.7 с	1.7 с	1.9 c
57% ET	2.6 c	0.93 d	1.1 d
71% ET	2.1 d	0.3 d	0.3 e
89% ET	1.8 d	0.22 d	0.22 e
107% ET	1.7 d	0.20 d	0.2 e

Best irrigation level for olive oil flavor is 35% to 55% ET

- High level of pleasant fruitiness
- Both ripe fruit and green character
- More complexity and depth
- Higher polyphenol content
- Balanced bitterness
- Balanced pungency
- Excess irrigation = bland oils

Olive oil summary

- To optimize olive oil production, don't fully irrigate
- Oil production optimized between 40 and 70% ET
 - Best production...high end of this range
 - Best oil quality...lower end
- Full irrigation of oil olives
 - increases pumping costs
 - promotes unnecessary vegetative growth
 - can reduce flowering
 - increases pruning costs

Thank you!

Joe Connell, Farm Advisor UC Cooperative Extension **Butte County**

