Drought Management Strategies for Grapes

Janet Caprile Farm Advisor UC Cooperative Extension Contra Costa & Alameda Counties jlcaprile@ucdavis.edu

Livermore Valley Winegrowers Association Livermore – April 24, 2014

2014 Drought Challenges

1. Not enough water

– Are we going to have cutbacks?

2. Salty water

- Less runoff -> more salt in surface water
- More use of groundwater

Not Enough Water Make every drop count!

- 1. Control weeds
- 2. Improve irrigation efficiency
 - System maintenance
 - Irrigation management

Not Enough Water

1.Control weeds
2. Control the cover crop
They increase water use by 20-30%
Winter annuals: terminate early

- Permanent:
 - eliminate & renew in fall

Not Enough Water 2. Improve irrigation efficiency System evaluation & maintenance

Know the application rateMaximize the uniformityMaintain the system

- Know your application rate

 Measure emitter flow rates
 Install flow meter

 How uniform is it?
 - Maximize uniformity!

Causes of non-uniformity – Poor design

Causes of non-uniformity Leaks & Breaks

Causes of non-uniformity

 Emitters with variable flows

Variable flow rate: clogging

Causes of non-uniformity To prevent clogging

- Clean & flush lines
- Clean & flush filters
- Chemical acid for HCO3
- Biological –acid, chlorine, Cu

http://micromaintain.ucanr.edu

Not Enough Water Make every drop count!

Control weeds
 Improve irrigation efficiency
 System maintenance

- Irrigation management
 - How much to put on?
 - When to do it?

Evapotranspiration

CALIFORNIA IRRIGATION MANAGEMENT INFORMATION SYSTEM DEPARTMENT OF WATER RESOURCES OFFICE OF WATER USE EFFICIENCY

ETo is available from local **CIMIS** weather stations: Pleasanton (CIMIS # 191) **Tracy (CIMIS # 167)** Brentwood (CIMIS # 47) Moraga (CIMIS # 178) Union City (CIMIS # 171) www.cimis.water.ca.gov

Calculating Crop ET (ETc)

- To convert Reference ET (ETo) to Crop ET (ETc):
- Calculate the crop coefficient (Kc) for your own vineyard Kc = % shaded area midday x .017
- Calculate Crop ET
 ETo x Kc = ETc
- 3. Add a deficit amount ETc x RDI = Irrigation

Regulated Deficit Irrigation (RDI)

- Reduce the ETc by a certain amount to:
 - Increase quality
 - Reduce excessive vine growth
 - Save water
- Impose a set RDI throughout the season
 - Moderate stress \sim 50-60% ETc
- Irrigation amount => ETc x RDI

Weekly Irrigation Spreadsheet

DATE	ЕТо	Kc	ЕТс	RDI	Irrigation Amount	
	(ın/wk)		(ın/wk)		(in/wk)	(gal/vine/wk) *
Jul 8-14	1.5	0.51	.78	.5	.39	12
Jul 15-21	1.4	0.51	.72	.5	.36	11
Jul 22-28	1.4	0.51	.70	.5	.35	11
Jul 29-Aug 4	1.4	0.51	.72	.5	.36	11
Aug 5-11	1.3	0.51	.68	.5	.34	11
Aug 12-18	1.4	0.51	.70	.5	.35	11
Aug 19-25	1.3	0.51	.66	.5	.33	10
Aug 26-Sept 1	1.2	0.51	.62	.5	.31	10
Sept 2-8	1.2	0.51	.62	.5	.31	10

* Gal/vine/wk = inches/wk x .622 x vine spacing (ft^2)

When do you begin?

- Let the vines dry down until they show moderate stress:
 - The vines have stopped growing
 - -50% of available water in the root zone is used
 - Leaf water potential hits target (10-16 bars)
- Once you begin irrigating
 - Apply the calculated ETc x RDI amount for the week
 - The vines should NOT start growing again

Plant Stress Monitoring

Visual Stress cues

Plant Stress Monitoring

Pressure Chamber thresholds

- White Varieties ~ 10-13 bars
- Red varieties ~13-16 bars
- Stress tolerance varies among varieties:
 - Merlot < Cab Sav < Zinfindel</p>

Soil Moisture Monitoring

There are numerous techniques, devices, and monitoring services available

Not Enough Water Make every drop count!

Control weeds
 Improve irrigation efficiency
 System maintenance
 Irrigation management

Not Enough Water What if you need to reduce more?

Plan for more stress than usual

- Apply an even deficit all season
- Minimize leaf pulling
- Minimize tucking in divided canopies
- Prune out extra canes, spurs
- Drop excess crop ASAP
- Drop sunburn late to protect remaining

2014 Drought Challenges

1. Not enough water

- Control weeds/cover crop
- Improve irrigation efficiency
- Use deficit irrigation

2. Salty water

 $_{\odot}$ Will it be too salty to use?

Where do salts come from?

Irrigation water is the primary source of salts in agricultural systems
Also from fertilizers, manures, composts
Salts can accumulate in root zone and damage crops

What salts are in the water?

- Sodium (Na⁺)
- Calcium (Ca²⁺)
- Magnesium (Mg²⁺)
- Chloride (Cl⁻)
- Sulfate (SO_4^{2-})
- Bicarbonate (HCO₃⁻)

Boron (B), Carbonate (CO_3^{2-}), Nitrate (NO_3^{-}), Potassium (K^+)

How is salinity measured?

Electrical Conductivity (EC) – ECw = salinity of the water

- ECe = salinity of the soil
- The units:
 - dS/m = mmhos/cm
 - uS/cm = 1000 x dS/m
- Total Dissolved Solids (TDS)
 - mg/L = ppm

How does salt effect plants?

Overall salinity

 EC (dS/m)

 Specific ions

 Toxicity (Na, Cl, B)

 Water Infiltration

How does salt effect plants?

- Overall salinity
 - High salt restricts osmotic flow
 - uses more energy to exclude salt in the root zone and take in water
 - Water stress symptoms
 - Less growth
 - Lower yields

The overall osmotic effect is stunting of plant growth

How much salt is too much ?

	Salt Effects on Yield			
	EC (dS/m)			
Source of Salinity	None	Increasing	Severe	
Soil/Rootzone (ECe)	<1.5	1.5-4.1	>4.1	
Irrigation Water (ECw)	<1.0	1.1-2.7	>2.7	

What does "Increasing Effect" mean

- Water: (assumes full ETc + 15% LF)
 - 1.7 ~ 10% yield reduction
 - 2.7 ~ 25 % yield reduction
 - 4.5 ~ 50% reduction

ECw varies over the season

Specific lon toxicity

Boron (B), Chloride (CI) and sodium (Na)

Specific Ion Toxicity (Na, CI, B)

How much is too much?

	Ion Effects on Yield				
	EC (dS/m)				
Source of Toxicity	None	Increasing	Severe		
Sodium (ppm)	< 460				
Chloride (ppm)	< 140	4-15	> 15		
Boron (ppm)	< 1	1-3	> 3		

Salinity Management

- Apply more water!
 - Leach salts below root zone
 - Apply full crop water use (ETc) after harvest, if possible
 - Let the rainfall leaching salts below the root zone
- More frequent in-season irrigations
 - Keep the upper root zone wetter it will be easier for the tree to extract water and exclude the salt
- Apply fertilizer modestly (they are salts!)

Web Resources

UC Drought Management website http://ucmanagedrought.ucdavis.edu/

Best Practices for Vineyard Water Management UCDavis Workshop – 2/20/14: http://wineserver.ucdavis.edu/content.php?category=VENSource&id=1012

Integrated Viticulture website: <u>http://iv.ucdavis.edu/Viticultural_Information/</u> Thanks to the following for providing slides and photos for this presentation:

- Steve Gratton, UCCE Water Specialist, UC Davis
- Larry Schwankl, UCCE Water Specialist, UC Davis
- Terry Prichard, UCCE Water Specialist, UC Davis
- Allan Fulton, UCCE Irrigation Advisor, Tehama County
- John Roncoroni, Weed Science Advisor, Napa County