Managing Salinity in Walnuts

Janet Caprile
Farm Advisor
UC Cooperative Extension
Contra Costa & Alameda Counties
jlcaprile@ucdavis.edu

Quad County Walnut Institute Stockton - March 6, 2014

Higher Salinity in 2014?

- Surface waters
 - Reduced runoff -> higher salt load
 - Reduced supply -> use well water
- Well water
 - Often higher in salts

What salts are in the water?

- Sodium (Na⁺)
- Calcium (Ca²⁺)
- Magnesium (Mg²⁺)
- Chloride (Cl⁻)
- Sulfate (SO_4^{2-})
- Bicarbonate (HCO₃-)

Cations

Anions

Boron (B), Carbonate (CO₃²-), Nitrate (NO₃-), Potassium (K⁺)

How is salinity measured?

Electrical Conductivity (EC)

- ECw = salinity of the water
- ECe = salinity of the soil
- The units:
 - dS/m = mmhos/cm
 - $uS/cm = 1000 \times dS/m$
- Total Dissolved Solids (TDS)
 - mg/L = ppm

How does salt effect walnuts?

1. Overall salinity

- EC (dS/m)

Specific ion toxicity

- Sodium (Na)
- Chloride (Cl)
- Boron (B)

Copyright @ 2004 Haganta of the University of California

How does salt effect walnuts?

- Overall salinity
 - High salt restricts osmotic flow
 - uses more energy to exclude salt in the root zone and take in water
 - Water stress symptoms
 - Less growth
 - Lower yields

The overall osmotic effect is stunting of plant growth

Tree Salt Tolerance

How much salt is too much?

	Salt Effects on Yield		
	EC (dS/m)		
Source of Salinity	None	Increasing	Severe
Soil/Rootzone (ECe)	<1.5	1.5-4.8	>4.8
Irrigation Water (ECw)	<1.1	1.1-3.2	>3.2

- What does "Increasing Effect" mean
 - Water: (assumes full ETc + 15% LF)
 - 1.5 ~ 10% yield reduction
 - 1.9 ~ 25 % yield reduction
 - 2.8 ~ 50% reduction

ECw varies over the season

Specific Ion toxicity

Boron (B), Chloride (CI) and sodium (Na)

Specific Ion Toxicity (Na, CI, B)

- Normal plant nutrients
- Accumulate in the wood & leaves
 - Interfere with normal cellular processes
 - Reduced photosynthesis
- Roots can regulate uptake
- Rootstocks vary in regulation ability

Salt Tolerance of Walnut Rootstocks

Salt Tolerance of Walnut Rootstocks

Leaf Analysis

ROOTSTOCK	Boron (ppm)	Chloride (%)	Sodium (ppm)
Black	480 b	0.7 c	56 b
Paradox	667 a	1.8 b	87 b
English	704 a	2.1 a	125 a
Excess Level	300	0.3	100

Salt Tolerance of Walnut Rootstocks

Salinity Management

- Apply more water!
 - Leach salts below root zone
 - Apply the full crop water use (ETc)
 - Apply an additional 15-20% "leaching fraction"
 - Many years the rainfall provides the leaching fraction!
- More frequent in-season irrigations
 - Keep the upper root zone wetter it will be easier for the tree to extract water and exclude the salt
- Apply fertilizer modestly (they are salts!)

Resources

UC Drought Management website

http://ucmanagedrought.ucdavis.edu/

UC ANR publications

http://anrcatalog.ucdavis.edu/

- Agriculture Salinity & Drainage (\$25)
- Irrigation Water Salinity & Crop Production (free)