
Irrigating Oil Olives

Joe Connell, Farm Advisor UC Cooperative Extension Butte County

University of California Cooperative Extension

Agriculture & Natural Resources Central Valley Region

Olive growth habit

- Olives bloom on one year old shoots
- Over-cropping:
 - decreases fruit size
 - decreases shoot growth
 - decreases flowering next season
 - aggravates alternate bearing

Relationship between olive tree growth and production

Farm olives with two seasons in mind:

- produce a moderate sized, high quality current crop
- generate sufficient vegetative growth for next season's bloom and crop
- helps minimize alternate bearing

Yield components in olive

Shoot growth
 Fruit load
 Fruit size and distribution
 Oil Content

Proper irrigation is important for shoot growth & bloom, fruit sizing, total yield, and reduction of alternate bearing

Average Reference Crop Water Use, ETo, inches

	Fresno	Orland	St. Helena
March	3.3	3.1	2.8
April	4.8	4.8	3.9
May	6.7	6.7	5.1
June	7.8	7.4	6.1
July	8.4	8.8	7.0
August	7.1	7.3	6.2
September	5.2	5.6	4.8
October	3.2	3.8	3.1
November	1.4	1.7	1.4
TOTAL	47.9	49.2	40.4

Reference ETo, olive Kc's and orchard water use (clean cultivated) in Orland

	<u>ETo (inches)</u>	<u>Kc</u>	<u>ETc (inches)</u>
March	3.1	0.75	2.3
April	4.8	0.75	3.6
May	6.7	0.75	5.0
June	7.4	0.75	5.6
July	8.8	0.75	6.6
August	7.3	0.75	5.5
September	5.6	0.75	4.2
October	3.8	0.75	2.9
November	1.7	0.75	1.3
TOTAL	49.2		37.0

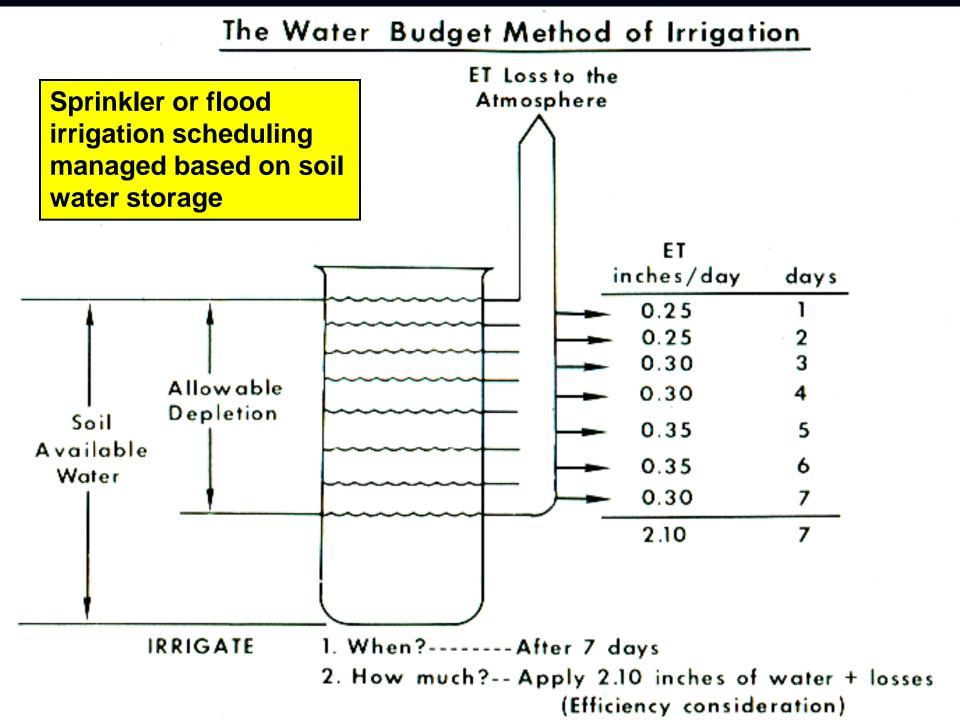
WEEKLY SOIL MOISTURE LOSS IN INCHES (Estimated Evapotranspiration)

08/05/05 through 08/11/05

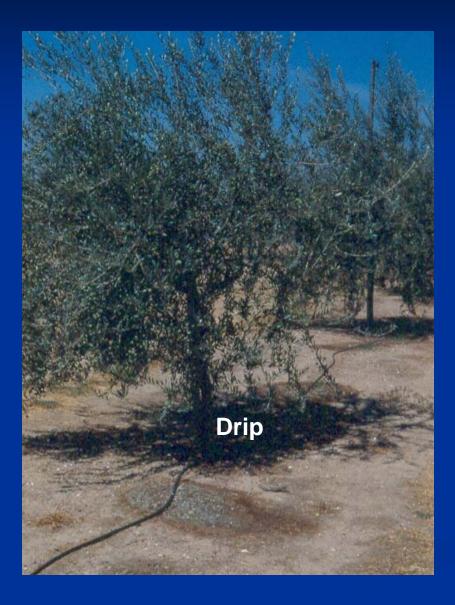
West of Sacramento River		River	East of Sacramento Riv	
Weekly	Accum'd		Weekly	Accum'd
Water	Seasonal	Crop	Water	Seasonal
Use	Use	(Leafout Date)	Use	Use
1.78	32.92	Pasture	1.63	30.66
1.71	31.81	Alfalfa	1.56	29.58
1.36	24.92	Olives	1.23	23.29
1.16	21.50	Citrus	1.06	19.97
1.71	29.95	Almonds (3/1)*	1.56	27.80
1.71	28.83	Prunes (3/15) *	1.56	26.73
1.71	27.18	Walnuts (4/1)*	1.56	25.11
1.53	30.19	Urban Turf Grass	1.42	28.24

WEEKLY APPLIED WATER IN INCHES¹

<u>50%</u>	<u>60%</u>	<u>70%</u>	<u>80%</u>	90%	- Efficiency	<u>50%</u>	<u>60%</u>	<u>70%</u>	<u>80%</u>	<u>90%</u>
2.7	2.3	1.9	1.7	1.5	Olives	2.5	2.1	1.8	1.5	1.4
2.3	1.9	1.7	1.5	1.3	Citrus	2.1	1.8	1.5	1.3	1.2
3.4	2.9	2.4	2.1	1.9	Almonds (3/1)	3.1	2.6	2.2	2.0	1.7
3.4	2.9	2.4	2.1	1.9	Prunes (3/15)	3.1	2.6	2.2	2.0	1.7
3.4	2.9	2.4	2.1	1.9	Walnuts (4/1)	3.1	2.6	2.2	2.0	1.7


¹ The amount of water required by a specific irrigation system to satisfy evapotranspiration. Typical ranges in irrigation system efficiency are: Drip Irrigation, 80%-95%; Micro-sprinkler, 80%-90%; Sprinkler, 70%-85%; and Border-furrow, 50%-75%.

For further information, contact the Tehama Co. Farm Advisor's office at 527-3101.


ETc data...

Local papers

DWR CIMIS website <u>www.cimis.water.ca.gov</u>

Low volume irrigation scheduling

- ETc determines use
- Drip or micro-sprinkler irrigation replaces what trees use every day or two
- Soil water holding capacity not important
- Keep emitters 2-3 feet away from trunk

Low volume irrigation scheduling

Determine how much water to apply
ETc – Kc, canopy size, climate (temp & day length)
Days between irrigations
Determine how long to irrigate
ETc between irrigations
Efficiency of irrigation system
Application rate of drippers or micro-sprinklers

Example: low volume irrigation scheduling

- If meeting full ETc 6.6 inches in July / 31 days = 0.21 inches/day
- Irrigated 2 days ago, assume ETc = 0.21 inch/day, must replace 0.42 inch of water use
 - 1acre inch = 27,154 gal x 0.42 = 11,405 gallons/acre in two days
 - 5' x 13' = 670 trees/acre
 - 11,405 / 670 = 17 gallons per tree
- Determine how long to irrigate
 - Assume single line drip w/ two, 1gal/hr emitters/tree
 - 17 gallons use / 2 gal/hr application rate = 8.5 hrs run time every other day to meet full ETc

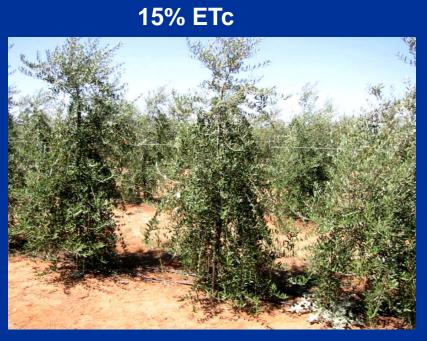
Control water costs by installing an efficient system

Heavy cropping years:

- Water more to promote shoot growth
- No water deficit early in the season
- Mature trees ~ 45 65% ETc
- Young trees ~ full ETc
- Light cropping years:
 - Water less to save water
 - Usually plenty of shoot growth
 - Mature trees ~ 35 45% ETc
 - Young trees ~ full ETc

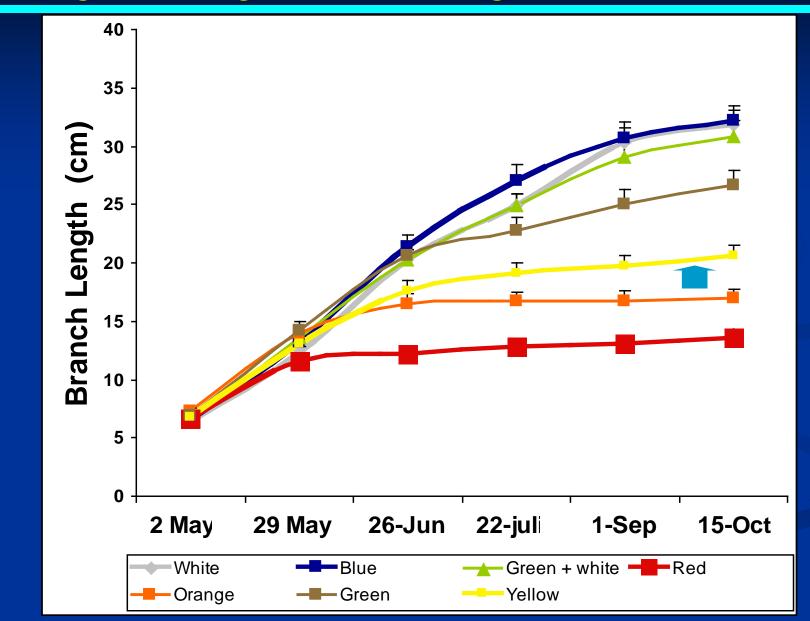
Dr. Steve Grattan, Irrigation Specialist, UC Davis, Joe Connell, Farm Advisor, Butte County, Maria Jose Berenguer-Merelo Studied oil olive irrigation in early 2000's, applied different irrigation treatments over the season

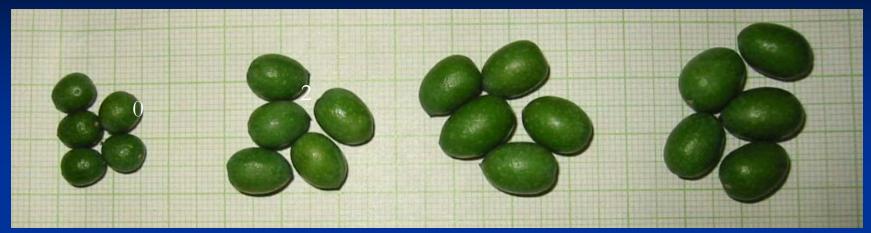
Treatment	Applied Water (gallons/tree)	% ET
Red	90	15
Orange	156	25
Yellow	313	40
Green	469	57
Grn-White	625	71
White	782	89
Blue	938	107


ncreasing water

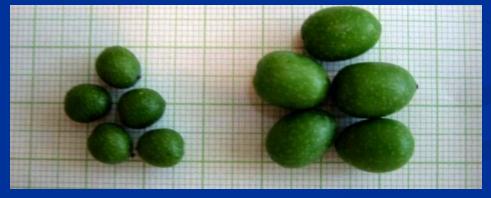
Olive shoot growth was affected by July

41% ETc

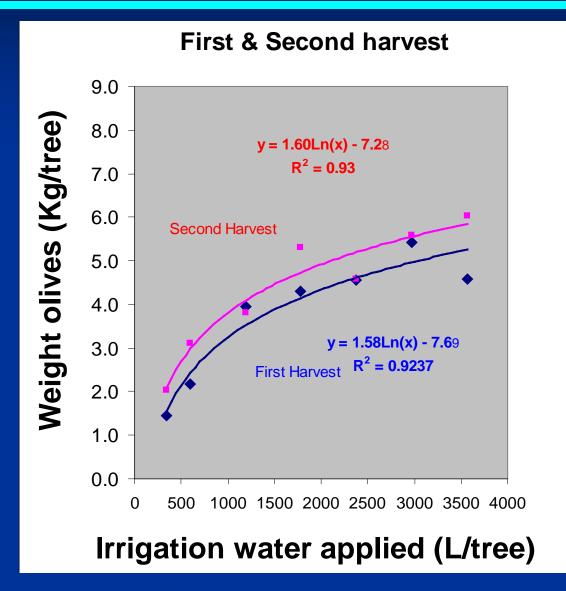



107% ETc

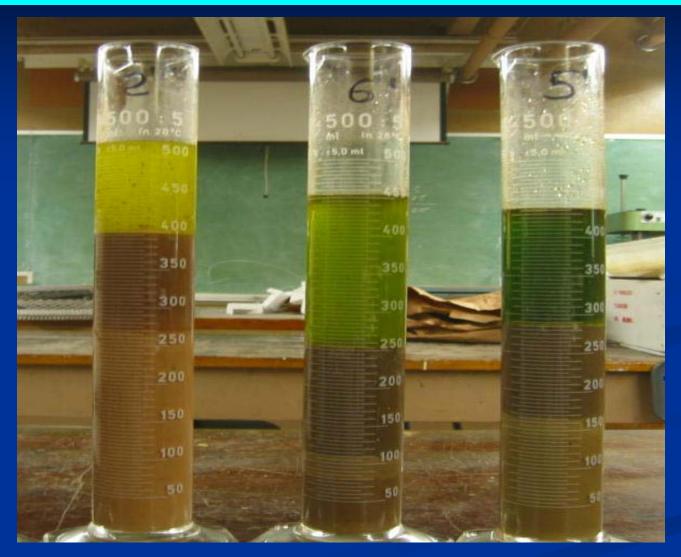
Vegetative growth vs. irrigation



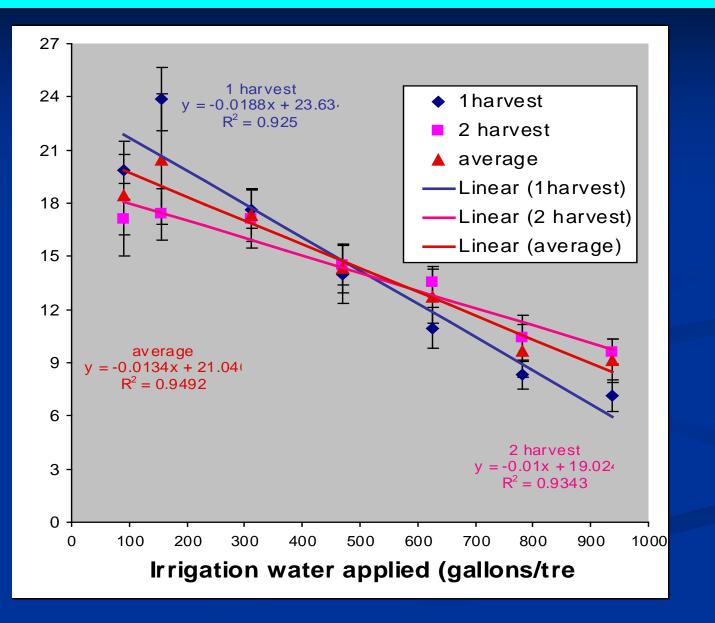
Water affected fruit size



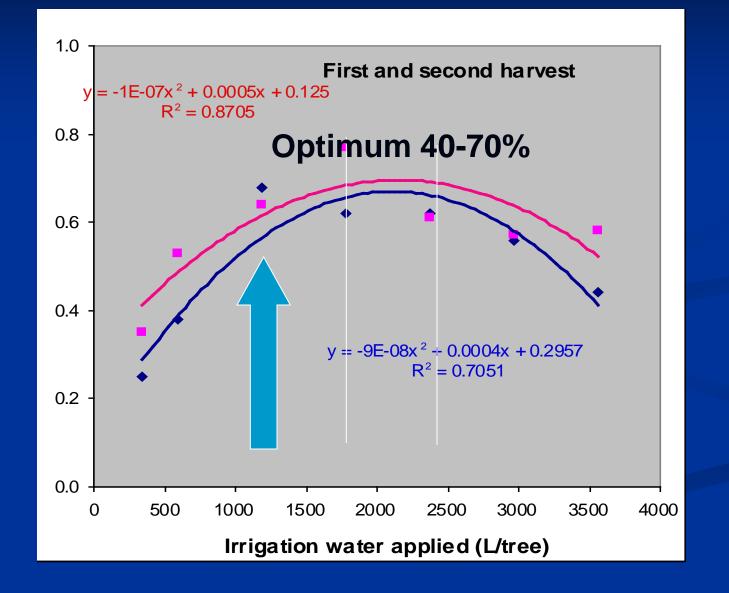
15% ETc 40% ETc 71% ETc 107% ETc


Driest Wettest

Olive fresh weight when harvested October 31st & November 18th



Oil yield and color



40% ETc 25% ETc 15% ETc

% Oil content

Total oil production per tree

Best irrigation level for production ranges between 50 and 70% ETc

Higher crop yield
 Makes up for less oil per fruit
 Good shoot growth
 Good return bloom

Fruitiness, bitterness, and pungency of oils is influenced by irrigation

Treatments	Fruitiness	Bitterness	Pungency
15% ET	3.6 a	6.0 a	4.9 a
25% ET	3.2 b	4.2 b	3.9 b
40% ET	2.7 с	1.7 c	1.9 c
57% ET	2.6 c	0.9 d	1.1 d
71% ET	2.1 d	0.3 d	0.3 e
89% ET	1.8 d	0.2 d	0.2 e
107% ET	1.7 d	0.2 d	0.2 e

Paul Vossen, UC Farm Advisor, Sonoma County

Best irrigation level for flavor is 35 to 55% ETc

High level of pleasant fruitiness Both ripe fruit and green character More complexity and depth Higher polyphenol content Balanced bitterness Balanced pungency Excess water = bland oils

- To optimize olive oil production, don't fully irrigate trees
- Oil production is optimized between 40 and 70% ETc
 - Best production is at the high end of this range
 - Best oil quality is at the lower end
- Full irrigation increases pumping costs, promotes unnecessary vegetative growth, can reduce flowering, and increases pruning costs

Date	Full ETc (in.)	RDI%	Irrigation (in.)
Mar 1-15	1.2	100	1.2
Mar 16-31	1.2	100	1.2
Apr 1-15	1.8	100	1.8
Apr 16-30	1.8	100	1.8
May 1-15	2.3	100	2.3
May 16-31	2.5	50	1.3
Jun 1-15	2.9	50	1.5
Jun 16-30	2.9	25	0.7
Jul 1-15	3.1	25	0.8
Jul 16-30	3.3	25	0.8
Aug 1-15	2.7	25	0.7
Aug 16-31	2.8	50	1.4 🔨
Sep 1-15	2.0	50	1.0
Sep 16-30	2.0	100	2.0
Oct 1-15	1.2	100	1.2
Oct 16-31	1.3	100	1.3
Nov 1-15	0.5	100	0.5
TOTAL (in.)	35.5		21.5
RDI Water A	60.5%		

How do you implement a Regulated Deficit Irrigation strategy?

With a controlled stress...

And, irrigating at 60.5% of full ETc saved 14 in. of water

Summary ...

On shallow soils, excess tree vigor can be managed by controlling water
 Shoot growth will slow or can be stopped

 Fruit growth slows during regulated deficit irrigation (RDI)

accelerates upon return to full irrigation

Summary ...

 Olive RDI is a strategy that can optimize oil yield and quality while reducing water costs

MUST know what you're doing
 Have good control of water applications
 Know your full ETc water requirement
 Know your systems water application rate
 Understand your goal

Joe Connell, Farm Advisor UC Cooperative Extension Butte County

Agriculture & Natural Resources

University of California Cooperative Extension

Olives do well on shallow soils with good drainage

Aerial view of the same field

Swales with poor drainage show up

Wet saturated areas, trees are gone

Wet spot at ground level

Another type of drainage problem

Replants at the low end of the field next to a road

Individual trees starting to weaken and turn yellow

Phytophthora crown rot

Water problems on young olive trees

Saturated soil.... areas of the field die
Puddling around the crown.... individual trees die

Questions?

Joe Connell, Farm Advisor UC Cooperative Extension Butte County

University of California Cooperative Extension

Agriculture & Natural Resources Central Valley Region