

Well Water Quality and Elements of Interpreting Lab Results

Daniel Munk dsmunk@ucdavis.edu cefresno.ucdavis.edu

U.C. Cooperative Extension Fresno County

Information on West Side Groundwater Quality

USGS 1959, 1968 (data intensive)
Recent study Westlands WD
No comprehensive review of GW quality in the area
Connate waters (I-5), deep WQ?

Origins of Groundwater

- Source sediments
 - Residence time
- Exposure/Mixing effects

Groundwater Quality Issues

 Drainage from marine rocks and surface sediments (Se, B)

- HS- corrosive
- Methane

 Wells accidentally perforated SW of Mendota

Groundwater Quality Issues

- Complex interconnections
- East meets west
 ...origins
- Inches to 1,000's of feet/yr
- NaSO₄ dominated w/ Cl "pockets"

Source Issues

Reliability of Source:
Mechanical problems
Groundwater wells can produce a wide range of water qualities

Access to groundwater

Well yield
Depth
Sediment type
Interconnected "branches"
Changes w/ timeoverdraft

Kings Groundwater Basin

Contours are dashed where inferred. Contour interval is 10, 20, 50 and 100 feet.

Groundwater: In the dark

- To predict impact on crops and soils we need better info on:
 - geographical distribution of sediments (interconnections)
 - Water quality
- Recharge sources and rates

GW Issues Going Forward

Better inventory of SJV basin resources
How does recharge balance pumping today?

How will water quality be impacted over time with anticipated pumping?
Will we have a resurgence in subsidence? Assessment: What water quality issues merit concern?

Water infiltration problems?
Premature crop water stress
Crop physiology- Leaf symptoms
Variability appears to be increasing

Water Quality Issues

Soil effects - Indirect
 Impacts on Plants - Direct

Water Quality and Soils

Impacts on soil structure
Connection to water infiltration
Combine to influence management including undesired consequences

Impact of Water Quality on Infiltration

Using Agricultural Analytical Labs

Assist in sampling incl. handling/storage
Identify key management concerns
Lab results and interpretation
Develop a management plan if needed

Water Sampling Approaches Differ

- Large sample #'s
- Grid or zone
- Composite?
- Depth (3-5')
- Composition- SP, ESP, lime %, Gypsum req.

- Fewer samples
- Delay after startup
- More frequent
- V. time and condition sensitive (bicarbonates)

Primary Constituents of Well Water

<u>Cations</u>

Calcium (Ca²⁺)
Magnesium (Mg²⁺)
Sodium (Na⁺)

Anions

Chloride (Cl)
Carbonates
Sulfate (SO₄²⁻)

Primary Constituents of Well WaterCationsAnions

- Calcium (Ca²⁺)
- Magnesium (Mg²⁺)
- Sodium (Na⁺)

- Chloride (Cl)
- Carbonates (HCO₃⁻, CO₃²⁻)
- Sulfate (SO₄²⁻)

Minor Constituents of Concern

- Iron (Fe)
- Manganese (Mn)
- Potassium (K+)

- Boron
- Nitrate
- Selenium

Terminology- Concentration Units

 Milligrams per liter (mg/l) = parts per million (ppm) = Total Dissolved Salts (TDS)

Equivalence = units of charge

Milliequivalents per liter = Meq/l

– ppm/equivalent weight

Pounds per acre foot

Terminology- Concentration Units

• EC as a measure of salinity

- Conductivity (mho vs. ohm)
- dS/m = mmho/cm = 1000 umhos/cm
- SAR a ratio is unitless
- Alkalinity = Carbonate totals

Electrical Conductivity (EC) and TDS

Electrical Conductivity (EC) and TDS

1 dS/m = 640 ppm
5 dS/m = 800 ppm

Analytical Groundwater Tests

Location	pН	Ecw	Ca+Mg	Na	SAR	Adj. SAR	CL	CO3+HCO3	В	NO3-N
1	8.1	1.3	1.0	11.8	16.7	17.0	3.5	4.0	1.2	10.0
2	8.6	0.8	0.6	8.3	15.2	13.6	2.0	4.0	1.1	8.0
3	8.7	0.6	0.4	5.6	12.5	10.0	1.5	2.3	0.9	8.0
4	8.3	0.4	0.5	3.1	6.2	4.1	1.0	1.1	0.2	8.0
5	7.9	1.7	4.6	4.1	10.9	-	N/A	1.55	0.98	-
6	7.8	0.54	1.9	0.4	1.8	-	0.4	3.1	0.1	-
7	8.4	1.6	0.6	0.2	16.9	-	2.6	7.2	2.7	-

EC: 1 dS/m = 640 ppm 0.4 = 250 ppm 1.7 = 1100 ppm

Sodium: SAR 1.8 to 17 Carbonates: 1.1 to 7.2 meq/l

Boron: 0.1 to 2.7 Chloride: 0.4 to 3.5 Nitrate: 2 to 10 ppm

Typical range in well water

EC's 0.3 to 2.5 dS/m (200 to 1800)
Calcium (0.2 to 15 meq/l)
Magnesium (0.1 to 10 meq/l)
Sodium (0.2 to 30 meq/l)
Carbonate totals (0 to 10 meq/l)
Chloride (0.2 to 25 meq/l)
Sulfate (0.2 to 15 meq/l)

Typical range in well water

- Nitrates (0 to 10 mg/l)
- Boron (0 to 3 mg/l)
- Ammonium (0 to 4 mg/l)
- Potassium (0 to 2 mg/l) Sulfate (0.2 to 15 meq/l)

pH (6.1 to 8.7)
SAR (1 to 15)

Analytical Groundwater Tests

pН	Ecw	Ca+Mg	Na	SAR	Adj. SAR	CL	CO3+HCO3	В	NO3-N	
8.1	1.6	2.4	11.3	10.4		8.7	4.6	0.1	ND	
8.0	3.1	6.8	20.4	11.4		24.8	4.0	0.2	ND	
8.7	0.6	0.4	5.6	12.5		1.5	2.3	0.9	8.0	
8.3	0.4	0.5	3.1	6.2		1.0	1.1	0.2	8.0	

EC: 1 dS/m = 640 ppm 0.4 = 250 ppm 1.7 = 1100 ppm

Sodium: SAR 1.8 to 17 Carbonates: 1.1 to 7.2 meq/l

Boron: 0.1 to 2.7 Chloride: 0.4 to 3.5 Nitrate: 2 to 10 ppm

Evaluation Principles

Work with a reputable Lab
The result is only as good as the sample
Electroneutrality: The anion charge is equivalent to cation charge (equivelence)

Water Quality and Plant Responses

Plant Salinity Response
 – Osmotic effect (osmotic pressure)
 – Water Potential gradients

Relative Yield of Almonds and Cotton Affected by Soil Salinity

Water Quality and Plant Responses

Plant Salinity Response

 Osmotic effect (osmotic pressure)
 Water Potential gradients

 Toxic Ion Effects

 Na, Cl⁻, B

Almond Leaf Symptoms

Sodium toxicity

Plant Responses and Risks to Toxic Ions

Irrigation water concerns

- Soil considerations
- Leaf tissue indicators

Specific ions in irrigation waters – almond guidelines

	Degree of Restriction				
Specific Ion	None	Increasing	Severe		
Sodium (ESP)	< 3.0	3 - 9	> 9.0		
Chloride (meq/l)	< 4.0	4 - 10	> 10.0		
Boron (mg/l)	< 0.5	0.5 - 3.0	> 3.0		

Saturated Soil Extract

	Degree of Restriction				
Specific Ion	None	Increasing	Severe		
Sodium (ESP)	< 5.0	5 - 15	> 15.0		
Chloride (meq/l)	< 5.0	5 - 15	> 15.0		
Boron (mg/l)	< 0.5	0.5 - 3.0	> 3.0		

Leaf Tissue (Almonds)

	Degree of Restriction				
Specific Ion	None	Increasing	Severe		
Sodium (ESP)	< .25	.2540	> .40		
Chloride (meq/l)	< .3	.35	> .5		
Boron (mg/l)	< 30	30 - 85	> 85		

Management Issues Merging water, soil and plant observations

- Soil evaluation
- Soil volume
- % Lime
- ESP

Gypsum
 Requirement

Management Issues

• EC Modification (soils)

- Irrigation systems
- Leaching fraction and timing of leaching
- Modification of SAR/ESP
 - Gypsum (lime)
 - Sulfur
 - Acids

Use your tools!

Consider Routine Evaluation
Sample key constituents
Frequently monitor a changing system
Periodically re-evaluate long term trends

