Irrigation of Olives ---What can be done if water is short?

Joe Connell, Farm Advisor, Butte County

University of California Cooperative Extension

Agriculture & Natural Resources Central Valley Region

Olive bearing habit

- olives bloom on one year old shoots
- over-cropping:
 - decreases fruit size
 - decreases shoot growth
 - decreases flowering next season
 - aggravates alternate bearing

Relationship between olive tree growth and production

Farm with two seasons in mind

- produce a moderate, high quality current crop
- generate sufficient vegetative growth for next season's bloom and crop
- minimizes alternate bearing

Practice fruit thinning in the heavy crop year

Improves size, can help generate shoot growth if water is short Water management ---shoot growth & bloom
fruit sizing
total yield
alternate bearing

Inflorescence growth vs. timing of March water stress

A -- Continuous ample soil moisture.

C -- Moisture deficit in mid-March, at intermediate flower development.

D -- Moisture deficit in late March.

B -- Moisture deficit in early March, an early stage of flower development.

E -- Continuous moisture deficiency.

Source: Dr. H.T. Hartmann UCD Pomology

Early spring water stress effects on Barouni olives

Water Stress <u>Timing</u>	% Leaf <u>Drop</u>	# Flowers/ Inflorescence	% Perfect <u>Flowers</u>	# Fruits / 100 Inflorescences
Control (No stress)	2.8	15.7	27.4	3.3
3/3-3/11	12.2	4.9	65.4	4.3
3/7-3/21	8.4	8.7	4.0	0.1
3/18-4/4	4.8	8.3	9.3	0.6
3/1-4/4	12.5	6.7	0.6	0.3
P = .05		3.2	21.4	

Source: Dr. H.T. Hartmann UCD Pomology, 1960

Evapotranspiration (ET)

- Evaporation water evaporation from soil Transpiration - water evaporation from leaves Climate Solar Radiation \uparrow - ET \uparrow (day length) Humidity - ET ↑ Temperature 1 - ET 1 ■ Wind ↑ - ET ↑ Tree canopy size (> 50% cover = 100% ET)
 - Tree canopy size (> 50% cover = 100%

Sunday, August 14, 2005

WEEKLY SOIL MOISTURE LOSS IN INCHES (Estimated Evapotranspiration)

08/05/05 through 08/11/05

West of Sacramento River		iver	East of Sacramento Riv		
Weekly	Accum'd		Weekly	Accum'd	
Water	Seasonal	Crop	Water	Seasonal	
Use	Use	(Leafout Date)	Use	Use	
1.78	32.92	Pasture	1.63	30.66	
1.71	31.81	Alfalfa	1.56	29.58	
1.36	24.92	Olives	1.23	23.29	
1.16	21.50	Citrus	1.06	19.97	
1.71	29.95	Almonds (3/1) *	1.56	27.80	
1.71	28.83	Prunes (3/15) *	1.56	26.73	
1.71	27.18	Walnuts (4/1)*	1.56	25.11	
1.53	30.19	Urban Turf Grass	1.42	28.24	

WEEKLY APPLIED WATER IN INCHES¹

<u>50%</u>	<u>60%</u>	<u>70%</u>	<u>80%</u>	<u>90%</u>	Efficiency	<u>50%</u>	<u>60%</u>	<u>70%</u>	<u>80%</u>	<u>90%</u>
2.7	2.3	1.9	1.7	1.5	Olives	2.5	2.1	1.8	1.5	1.4
2.3	1.9	1.7	1.5	1.3	Citrus	2.1	1.8	1.5	1.3	1.2
3.4	2.9	2.4	2.1	1.9	Almonds (3/1)	3.1	2.6	2.2	2.0	1.7
3.4	2.9	2.4	2.1	1.9	Prunes (3/15)	3.1	2.6	2.2	2.0	1.7
3.4	2.9	2.4	2.1	1.9	Walnuts (4/1)	3.1	2.6	2.2	2.0	1.7

¹ The amount of water required by a specific irrigation system to satisfy evapotranspiration. Typical ranges in irrigation system efficiency are: Drip Irrigation, 80%-95%; Micro-sprinkler, 80%-90%; Sprinkler, 70%-85%; and Border-furrow, 50%-75%.

For further information, contact the Tehama Co. Farm Advisor's office at 527-3101.

ET data...

Local papers

DWR CIMIS website <u>www.cimis.water.ca.gov</u>

Dr. Goldhammer, Irrigation Specialist, UC KAC, early 1990's Narrow Differential Irrigation Trial ---

Percent of Control	(Kc) Crop Coefficient	Applied Water Acre-in/Acre
25%	.16	8.9
40%	.26	14.2
55%	.36	19.5
70%	.46	24.9
85%	.55	30.2
100%	. <mark>65</mark>	35.5
115%	.75	40.8
130%	.85	46.2

8 Irrigation Treatments with 6 Replications

Yield components in olive:

Shoot growth & bloom
 Fruit load
 Fruit size distribution (value)
 Oil Content

Olive crop coefficient (Kc) 0.65-0.75
Orchard water use (ETc)
36 to 41 acre-in/acre in Sac & SJV
More water improved gross revenue
up to 41 acre-in/acre

Summary ---

Sustained deficit irrigation drastically reduces yield Flowering is accelerated Shoot growth is reduced Fruit size -- most sensitive component Fewer fruits & smaller sizes BUT, olive is drought tolerant Tree will survive with little to no irrigation

Average Reference Crop Water Use, ETo, inches

	Fresno	Orland	St. Helena
March	3.3	3.1	2.8
April	4.8	4.8	3.9
May	6.7	6.7	5.1
June	7.8	7.4	6.1
July	8.4	8.8	7.0
August	7.1	7.3	6.2
September	5.2	5.6	4.8
October	3.2	3.8	3.1
November	1.4	1.7	1.4
TOTAL	47.9	49.2	40.4

Calculating orchard water use (clean cultivated) in Orland

	<u>ETo (inches)</u>	<u>Kc</u>	<u>ETc (inches)</u>
March	3.1	0.75	2.3
April	4.8	0.75	3.6
May	6.7	0.75	5.0
June	7.4	0.75	5.6
July	8.8	0.75	6.6
August	7.3	0.75	5.5
September	5.6	0.75	4.2
October	3.8	0.75	2.9
November	1.7	0.75	1.3
TOTAL	49.2		37.0

Low volume irrigation scheduling...

- Use is determined by ET
- Drip or micro-sprinkler irrigation replaces what trees use every day or two
- Soil water holding capacity not important
- Keep emitters 2-3 feet away from trunk

Low volume irrigation scheduling...

Determine how much water to apply
Crop ET - climate, canopy size
Days between irrigations
Determine how long to irrigate
ET between irrigations
Uniformity of irrigation system
Application rate of drippers or micro-sprinklers

Low volume irrigation scheduling...

ET 6.6 inches in July / 31 days = 0.21 inches/day
 Irrigated 2 days ago, assume ET = 0.25 inch/day, must replace 0.5 inch of water use

- 1acre inch = 27,154 gal / 2 = 13,577 gallons/half-inch
- 22' x 22' = 90 trees/acre
- 13,577 / 90 = 151 gallons per tree
- Determine how long to irrigate
 - Assume double line drip w/ eight, 1gal/hr emitters/tree
 - 151 gallons use / 8 gal/hr application rate = 19 hrs run time every other day

Dr. Goldhammer, Irrigation Specialist, UC KAC, mid 1990's Regulated Deficit Irrigation trial ----

Irrigation Regime (% water saved)	Individual Fresh Fruit Wt. (g)	Fruit Load (#/tree)	Total Fruit Yield (tons/acre)	Crop Value (\$/ton)	Gross Revenue (\$/acre)
Control	4.12	19690	8.12	412	3340
T2 (13%)	4.15	18200	7.65	431	3310
T3 (21%)	4.11	20010	8.25	430	3580
T5 (40%)	4.23	16070	6.61	426	2800
	NSD	NSD	NSD	NSD	NSD

Regulated Deficit Irrigation, a controlled stress

Date	Treatment 1 Full ETc (in.)	RDI%	Treatment 2 Irrigation (in.)	RDI%	Treatment 3 Irrigation (in.)	RDI %	Treatment 5 Irrigation (in.)	
Mar 1-15	1.2	100	1.2	100	1.2	100	1.2	
Mar 16-31	1.2	100	1.2	100	1.2	100	1.2	
Apr 1-15	1.8	100	1.8	100	1.8	100	1.8	
Apr 16-30	1.8	100	1.8	100	1.8	100	1.8	
May 1-15	2.3	100	2.3	100	2.3	100	2.3	
May 16-31	2.5	100	2.5	100	2.5	50	1.3	
Jun 1-15	2.9	100	2.9	50	1.5	50	1.5	
Jun 16-30	2.9	50	1.5	50	1.5	50	0.7	
Jul 1-15	3.1	50	1.6	50	1.6	50	0.8	
Jul 16-30	3.3	50	1.7	50	1.7	50	0.8	
Aug 1-15	2.7	100	2.7	50	1.4	50	0.7	
Aug 16-31	2.8	100	2.8	100	2.8	50	1.4	
Sep 1-15	2.0	100	2.0	100	2.0	100	1.0	
Sep 16-30	2.0	100	2.0	100	2.0	100	2.0	
Oct 1-15	1.2	100	1.2	100	1.2	100	1.2	
Oct 16-31	1.3	100	1.3	100	1.3	100	1.3	
Nov 1-15	0.5	100	0.5	100	0.5	100	0.5	
TOTAL (in.)	35.5		31.0		28.3		21.5	
Water Save	d (in.)		4.6		7.4		14.0	
Water Save	d (%)		12.9%		20.8%		39.5%	

Gross Fresh Fruit Yield

Jumbo + Ex. Large + Large + Medium Sizes

Small + Potito Sizo Fruit

Sub-Petite + Undersize + Cull Size Fruit

Gross Revenue

Summary ----

Fruit growth slows during *regulated* deficit irrigation (RDI)
 accelerates upon return to full irrigation
 RDI saved up to 21% (7.4 in) of normal water use (35.4 in)
 no effect on fruit size

Summary ----

 Olive RDI is a strategy that can save water while maintaining good yield of high quality fruit

MUST know what you're doing
 good control of water applications

Dr. Steve Grattan, Irrigation Specialist, UC Davis, early 2000's Joe Connell, Farm Advisor, Butte County, Maria Jose Berenguer-Merelo Narrow Differential Irrigation trial for Oil Olives

	Treatment Color Code	Applied Water (gallons/tree)	% ET Treatment
	Red	90	15
	Orange	156	25
	Yellow	313	40
	Green	469	57
	Grn-White	625	71
7	White	782	89
	Blue	938	107

Increasing water

SHD Oil Olives

By July, tree density obviously affected.

41% ET

107% ET

Water stress reduced vegetative growth

Water stress reduced fruit size

Fresh weight at October 31 & November 18 harvests

Percent oil content

Total oil production per tree

Best irrigation level for olive oil production ranges between 50 and 70% ET

Higher crop yield
 Makes up for less oil per fruit
 Cood aboot growth

Good shoot growthGood return bloom

Paul Vossen, Farm Advisor, Sonoma Co. and Vito Polito, UC Davis Fruitiness, bitterness, and pungency of olive oils as influenced by irrigation

Treatments	Fruitiness	Bitterness	Pungency
15% ET	3.6 a	6.0 a	4.9 a
25% ET	3.2 b	4.2 b	3.9 b
40% ET	2.7 c	1.7 c	1.9 c
57% ET	2.6 c	0.93 d	1.1 d
71% ET	2.1 d	0.3 d	0.3 e
89% ET	1.8 d	0.22 d	0.22 e
107% ET	1.7 d	0.20 d	0.2 e

Best irrigation level for olive oil flavor is 35 to 55% ET

- High level of pleasant fruitiness
- Both ripe fruit and green character
- More complexity and depth
- Higher polyphenol content
- Balanced bitterness
- Balanced pungency
- Excess irrigation = bland oils

Olive oil summary ---

- To optimize olive oil production, don't fully irrigate
- Oil production optimized between 40 and 70% ET
 - Best production...high end of this range
 - Best oil quality...lower end
- Full irrigation of oil olives
 - increases pumping costs
 - promotes unnecessary vegetative growth
 - can reduce flowering
 - increases pruning costs

Questions?

Joe Connell, Farm Advisor UC Cooperative Extension Butte County

University of California Cooperative Extension

Agriculture & Natural Resources Central Valley Region