Maintaining Almond Yields With Less Water

Terry Prichard UC Davis Dept Land, Air, and Water Resources

Water Conservation

- > Application Efficiency
 - System Design/ Uniformity
- Proper Irrigation Scheduling
- > Runoff Collection and Reuse
- Reduce Evaporation
 - Targeted Application / micro irrigation / buried drip
- Reduce Transpiration

Water Use

Climate Evapotranspiration Reference (ETo)

Sun Interception (

(Kc)

Size of Canopy Time of season (canopy Expansion) Spacing Pruning

Plant Controls Stomata

Available Moisture

Stomata open to allow carbon dioxide (CO2) to enter a leaf and water vapor to leave.

Site Conditions

Irrigation System: full coverage sprinkler Experimental Area: 10 acres > Soil Type: deep, sandy loam San Joaquin Delta College Farm, \succ Location: Manteca, CA > Trees: Nonpareil, Price, Peerless; 12-yrs old in 1990; uniform stand > Rootstock: Nemaguard

<u>1990-93 Treatments</u>

> T1 = 100%, full water use

 \sim T2 = 70%, postharvest deficit

 $T_3 = 70\%$, midseason deficit

> 74 = 50%, midseason & postharvest deficit

T5 = 50%, midseason deficit

> T6 = 66%, plant indicated irrigation

Plant Indicated Irrigation

An irrigation management strategy
> provides for full water use through
June 15

 For the remainder of the season
 uses a pre-dawn leaf water potential threshold of -12 bars as an indication of when to irrigate. Stem Water
 Potential ? -16 to -18 bars

Mid-day Stem Water Potential

Tree Water Stress

- Measured as midday stem water potential
 - Using a pressure chamber
 - aka pressure bomb

PRE-DAWN LEAF WATER THAT 1990 ALMOND WATER STRESS TRIAL

PRE-DAWN LEAF WATER 1990 ALMOND WATER STRESS TRIAL

Combined Years, 1990-93

<u>Treatment</u>	Seasonal Use	Consumptive Water Use	
1 (100% use)	100	37.4	
2 (70% use) (postharvest deficit)	72	26.9	
3 (70% use) (midseason)	66	24.7	
4 (50% use) (midseason & postharvest deficit)	52	19.8	
5 (50% use) (midseason deficit)	50	18.5	
6 Pii	66	24.7	

Combined Years, 1990-93

Trea	atment	Deficit Timing	Nut Load (nuts/tree x1000)	Avg Kernel <u>Mass (g)</u>	Prunings <u>(Ibs/tree)</u>
1	100% use	none	15.8 ab*	1.28 a	38.8 a
2	70% use	postharvest deficit	13.7 d	1.22 b	25.6 c
3	70% use	midseason deficit	14.1 cd	1.09 de	27.1 c
4	50% use	midseason & postharvest	15.2 abc	1.12 d	32.2 abc
5	50% use	midseason deficit	14.6 bcd	1.08 e	27.7 bc
6 (P	ii)		16.3 a	1.17 c	34.4 ab
P va	lue		0.0012	0.000	0.003

*Common letters among means within columns denote no significant difference at $P \leq 0.05$.

Combined Years, 1990-93

Tre	atment	Deficit Timing	Hull Tight (% of Mea	s Wt <u>t Yield)</u>
1	100% use	none	0.7	b
2	70% use	postharvest defi	cit 0.3	b
3	70% use	midseason defic	cit 4.8	b
4	50% use	midseason & po	stharvest 0.5	b
5	50% use	midseason defic	cit 23.1	a
6(Pii)	HULL-	TIGHTS 0.5	b
P value *Common letters among means within columns denote no significant difference at P<0.05.				

>1st Year

No significant differences with up to 50% of full water requirement

<u>Results</u>

After 4 years of imposed deficits
Yields reduced by 25-36%
Pii not significantly reduced
Yield reductions a result of

Nut load

Nut size

Residual Effects of Water Deficits 8 Irrigation Strategies on Almonds

<u>Results</u>

After 1 year of full water
Average of 10% yield increase
Lowest 1993 yield resulted in highest % increase (16%)

After 2 years of full water
Yields improved to average
99.4% of full water treatment

Drought Strategy

> Through mid-June – No Water Stress
 > Mid-June to harvest – Water Stress
 2" water at hullsplit
 > Postharvest – Water Stress ?

Three Methods

Use Stem water potential with thresholds for a particular stage of development

Use ET estimates and reduce by a fraction of full water use

Measure soil moisture and apply at a threshold value

Tree Water Stress

- Measured as midday stem water potential
 - Using a pressure chamber
 - aka pressure bomb

Calculate Full Potential Water Use

> ETo x Kc = Full Potential Water Use
 > Use weekly summed data

Almond Water Use Manteca Normal California, inches

			Historical
Date	<u>ETo</u>	<u>Kc</u>	ETc
March 16-31	2.32	0.54	1.25
April 1-15	2.54	0.60	1.52
April 16-30	2.88	0.66	1.90
May 1-15	3.27	0.73	2.39
May 16-31	3.65	0.79	2.88
June 1-15	3.80	0.84	3.19

March 16 - June 15th

Almond Water Use Manteca Normal, California, inches

			Historical
Date	ETo	Kc	ETc
June 16-30	3.98	0.86	3.42
July 1-15	4.08	0.93	3.80
July 16-31	3.94	0.94	3.70
August 1-15	3.65	0.94	3.43
August 16-31	3.49	0.94	3.28
September 1-15	2.88	0.94	2.71
September 16-30	2.38	0.91	2.16
October 1-15	1.96	0.85	1.67
October 16-31	1.56	0.79	1.23
November 1-15	1.08	0.7	0.76
June 16 – Nov 15			26.17

Soil Moisture Monitoring

> Devices:

- Quantitative-- A number inches in rootzone
 - Neutron Probe
 - Dielectric Devices

Neutron Scatter / Probe

Soil Dielectric

The dielectric permittivity is a measure of the capacity of a non-conducting material to transmit electromagnetic waves or pulses.

Dielectric Permittivity

- > Air = 1
- > soil minerals = 3 to 5

(denser soils have higher apparent permittivities).

> Water 81

Dielectric Devices

C-Probe

Data Handling / Telemetry

> Wide range available

 Direct hand held "pod" collection
 Cell phone modem to data processing to internet acc

Soil Moisture Monitoring

> Devices:

- Qualitative Devices--- A water status at point of reading
 - Tensiometers
 - Moisture Blocks

Soil Moisture Monitoring

Issues:

Placement

Small point measurements

Not easily used for volumetric types of scheduling

Use a threshold value across depths

Manteca Average Year Almond Water Use

All Non-Beneficial Water Losses Should Be Minimized

Do not exceed the water holding capacity of the root zone in the spring--- water will be lost to deep percolation

Eliminate runoff from one area to another by turning the system off when runoff begins.

Use off peak power or irrigate at night to minimize evaporative losses.

Eliminate or minimize cover crops or weeds which can compete for water use

ROUNDUP

12 OZ

Evaluate and upgrade irrigation systems improve distribution uniformity

81,85

More Severe Strategy

Requires a cut back leaf out to June 15
 -12 t0 -14 bars mid-day stem water potential

June 15th to harvest
 -20 to -25 bars

