Glyphosate – The World's Herbicide Pros and Cons for Orchard Weed Management

> Brad Hanson UC Davis

> > see Duke and Powles 2008. Pest Manage. Sci 64:319-325

Tehama Prune Day Red Bluff, CA 2-5-10

Glyphosate

- N-(phosphonomethyl)glycine
- First tested and patented ~1970
 IPA salt formulation released in 1974
- Foliar activity, no residual
- Translocated to growing points
- Broad weed control spectrum
 - Grasses, broadleaves, annuals, perennials, woody, aquatics

Most Widely Used

- Hundreds of labels
 - Preplanting in many annual crops
 - Post harvest or harvest aid
 - Directed applications in annuals and perennials
 - Non-crop areas
 - Aquatic weeds (no surfactants)
 - Homeowner products
 - Vegetation suppression
 - Etc.

Pros – Unique Mode of Action

Duke and Powles 2008

,OH

Pros – Uptake and Translocation

- Taken up rapidly through plant surfaces
 Varies somewhat between species susceptibility
- Quickly enters phloem via difusion
 - Translocated with photosynthates to meristematic regions
 - Meristems, young leaves, root tips, other actively growing tissues
- Very limited degradation in most plants

Pros – Low Toxicity

- Humans don't have the same target site as plants
- Very low mammalian toxicity
 - LD50 (rats) is 5 g / kg body weight
 - 175 lb person would have to ingest ~1 lb of glyphosate
 - 7.5-fold less toxic than aspirin
 - 14-fold less toxic than nicotine
 - In most formulations, the surfactants are more toxic than the glyphosate
 - Not a carcinogen or reproductive hazard

Pros – Environmental Profile

OH

- Generally benign in the environment
 - Binds tightly to soil so little groundwater issues
 - Relatively short half-life due to microbial activity
 - This is why glyphosate is always applied to foliage

Cons – Drift risks

- Glyphosate not more prone to drift
- However...
 - Active at low rates
 - Translocated to growing points
 - Slow degradation in plants

Gly-6/10-74 PI

Simulated drift on plum

Cons - Overreliance

- Easy, effective, economical, broad spectrum,, applicator and environmental safety...
- Often can lead to overreliance and associated problems

Changes in Glyphosate Use

- Adoption of RR crops (early 90's)
 - Corn, soybean, cotton, canola, alfalfa
 - Sugarbeet, wheat, bentgrass
- Increasing dependence on glyphosate in CA
 - RoundUp off patent in 2000 price decrease
 - GWPA
 - Growers switching to POST weed management
 - 81% stonefruit acres in 2002; 110% in 2007
 - 116% tree nut acres in 2002; 144% in 2007

Cons - Weed Shifts

- Glyphosate is BROAD spectrum but not COMPLETE spectrum
 - Some species not well controlled
 - Some pigweeds, lambsquarters, morningglories, etc
- Dependence on glyphosate has resulted in many crops changing to a POST only program
 - Especially in RoundUp Ready crops
 - No-till
 - Also in tree and vine crops

Cons – Selection for Resistance

Repeated use can select for resistant biotypes
 Any herbicide or other weed management tool

~41% of all herbicides in CA

OH

HRW in California

25 **Common groundsel Perennial ryegrass** Smallflower umbrella sedge California arrowhead 20 **Russian thistle** Number of Species Wild oat Redstem **Ricefield bulrush** 15 Late watergrass **Rigid ryegrass** Long-leaved loosestrife **Barnyardgrass** 10 Early watergrass Small-seeded canarygrass Smooth scabgrass 5 Horseweed Italian ryegrass Hairy fleabane Hairy fleabane 0

Asparagus	1981
Roadside, railways	1989
Rice	1993
Rice	1993
Roadside	1994
Barley, wheat	1996
Rice	1997
Rice	1997
Rice	1998
Almonds, roadsides	1998
Rice	2000
Rice	2000
Rice	2000
Sugar beets, onions	2001
Rice	2002
Roadsides	2005
Roadsides	2005
Roadsides	2007
Roadsides, vines	2009

1996

990

1998

triazine (atrazine) sulfonylurea sulfonylurea sulfonylurea sulfonylurea pyrazolium (difenzoquat) sulfonylurea sulfonylurea fons & thiocarbamates glyphosate sulfonylurea fops & thiocarbamates fops & thiocarbamates fops and dims 03 synthetic auxins glyphosate glyphosate glyphosate glyphosate & paraquat 2006

004

www.weedscience.org

What's Next?

- What are we "selecting" with our weed management strategies?
 - Common weeds prone to resistance
 - Important herbicides use and reliance trends
 - Agronomic actions
 - Perennial crops, specialty crops, reduced tillage

Carnac the Magnificent by Johnny Carson

Worst HRW Worldwide (# infested sites)

	Present in CA	Resistance outside CA	Resistance reported in CA
Rigid ryegrass		8 modes of action	glyphosate
Wild oat	\square	6 MOA	✓ difenzoquat
Redroot pigweed		3 MOA	
Common lambsquarters	\square	4 MOA	
Green foxtail	\checkmark	4 MOA	
Barnyardgrass		7 MOA	ACCase, thiocarbamates
Goosegrass		4 MOA	
Kochia	\checkmark	3 MOA	
Horseweed		5 MOA	🗹 glyphosate, paraquat
Smooth pigweed		2 MOA	

10 worst weeds from www.weedscience.org

Resistance Trends

The Future?

Reported Glyphosate Resistance

	Resistance USA	Resistance CA
Amaranthus palmeri, A. rudis)	\square	
Ambrosia artemisifolia, A. trifada		
Conyza bonariensis, C. canadensis	\checkmark	\checkmark
Digitaria insularis		
Echinochloa colona		
Eleusine indica		
Euphorbia heterophylla		
Lolium multiflorum, L. rigidum		
Parthinium hysterophorus		
Plantago lanceolata		
Sorghum halapense		
Urochloa panicoides		

_он

Rigid and Italian Ryegrass (Lolium rigidum and L. multiflorum)

- Often co-exist (swarm)
- Annual grass
- Obligate outcrossers
- Throughout CA but more common weed in northern Central Valley
- 2 to 15-fold resistance
- Usually target site mutation

Italian Ryegrass

1.1

Figure 1. Map of California showing the geographical distribution of Italian ryegrass populations sampled for this study. Closed circles indicate populations with more than 20% seedlings surviving treatment with glyphosate t 866 g ae / ha; open circles indicate populations with 5% (two populations) or no surviving seedlings. Forty seedlings from each population were tested for glyphosate response.

From Jasieniuk et al. 2008. Weed Sci 56:496-502

Horseweed (Conyza canadensis)

- AKA mare's tail
- Annual weed
- Prolific seed producer
- Wind-blown seed
- Early colonizer
- Doesn't tolerate disturbance
- 6-fold resistance (whole plant)
- 4-8 fold resistance (in vivo)
- Mechanism not know. Suspected translocation mutation

Horseweed Survey – 2006-07

Hanson et al. 2009 Weed Sci 57:48-53

Hairy Fleabane (C. bonariensis)

- AKA flaxleaf fleabane
- Annual weed
- Wind-blown seed
- Early colonizer
- Doesn't tolerate disturbance
- 3 to 10-fold resistance (whole plant screening)
- ~ 4-fold resistance in vivo
- Mechanism not known

Weeds of GR Concern in C

- Cooperative research project recently initiated – UCD, UCCE, CSUF
- Focus on screening, quantifying, and mapping, and identifying mechanisms of resistance in:
 - Junglerice (Echinochloa colona)
 - Barnyardgrass (Echinochloa crus-galli)
 - Common lambquarters (Chenopodium album)
 - Johnsongrass (Sorghum halepense)
 - Pigweeds (Amaranthus spp.)
 - 11 pigweed species with resistance, 7 different MOA

Preserving Glyphosate

- Need to diversify weed management to preserve glyphosate as a tool
 - Genetics? Probably not soon in tree crops
 - New herbicides? A few new products coming
 - Use PRE products in addition to POST
 - Alternate or combine POST materials
 - Use full rates
 - Mechanical (tillage, mowing, mulches?)

